期刊文献+

面向预警卫星调度问题的改进粒子群算法 被引量:11

An Improved Particle Swarm Optimization Algorithm for Early Warning Satellites Scheduling Problems
原文传递
导出
摘要 针对预警卫星调度问题的特点,提出了改进型粒子群算法。首先构建了粒子整数编码和解码机制,使粒子编码对应资源分配方案;其次,采用基于优先级的粒子群初始化机制,提高算法对可行解空间的遍历效率;其次对运算符进行重定义,解决基本粒子群算法无法处理离散变量优化问题。最后将改进的离散分群粒子群算法应用于预警任务—资源的调度问题中,实验结果表明,同其它算法相比,该算法具有较高求解性能。 Aim at the Characteristics of early warning satellites scheduling problems,a Improved Optimization Algorithm(IPSO) was proposed in the paper.Firstly,a particles code and decode mechanism of particle swarm was designed for IPSO Algorithm;Secondly,the paper introduced initialization mechanism based on priority for improving the searching efficiency of algorithm in feasible solution space;Thirdly,For PSO algorithm can not handle the discrete variable optimization problems,the improved algorithm introduced operator redefinition policy.Finally,the IGPSO algorithm was applied to early warning satellites scheduling problems.The experimental results show that,compared with other two algorithms,the method presented has better solving capacity in solving this kind of problem.
出处 《系统工程》 CSSCI CSCD 北大核心 2012年第1期116-121,共6页 Systems Engineering
基金 国家自然科学基金资助项目(60972166) 国防预研基金资助项目(51406020401KG01)
关键词 预警任务 编码机制 初始化机制 更新机制 Early Warning Tasks Code Mechanism Initialization Mechanism Update Machanisim
  • 相关文献

参考文献7

  • 1王博,刘海军,安玮,周一宇.基于粒子群优化的传感器预分配方法[J].信号处理,2010,26(4):486-491. 被引量:7
  • 2冯明月.基于预警任务的天基预警系统低轨星座探测资源调度方法研究[D].长沙:国防科技大学,2010.
  • 3乔立岩 马云彤 彭喜元.离散二进制微粒群算法.电子测量与仪器学报,2005,:16-18.
  • 4Kennedy J, Eberhart R. Particle swarm optimization [C]//Proc IEEE Int Conf on Neural Networks, Perth, 1995 : 1942- 1948.
  • 5钟一文,杨建刚,宁正元.求解TSP问题的离散粒子群优化算法[J].系统工程理论与实践,2006,26(6):88-94. 被引量:48
  • 6Parsopoulos K E, et al. Unified particle swarm optimization for solving constrained engineering optimization problems [M]. Berlin: Springer, 2005.
  • 7Eberhart R, Kennedy J. A discrete binary version of the particle swarm algorithm [R]. Systems, Man, and Cybernetics, 1997: 4104- 4108.

二级参考文献26

  • 1汤晓君,刘君华.多传感器技术的现状与展望[J].仪器仪表学报,2005,26(12):1309-1313. 被引量:21
  • 2谢恺.天基红外低轨星座对目标的定位与跟踪[D].长沙:国防科技大学博士学位论文,2006.
  • 3N. Xiong, P. Svensson. Multi-sensor Management for Information Fusion : Issues and Approaches [ J ]. Information Fusion, 2002: 163-186.
  • 4S. Blackman, R. Popoli. Design and Analysis ofmodern Tracking Systems [ M ]. Boston London : Artech House, 1999 : 967-1065.
  • 5J. Kennedy and R. Eberhart. Particle Swarm Optimization [C]. IEEE Int. Conf. Neural Networks, 1995(4): 1942-1948.
  • 6K. Veeramachaneni , L. A. Osadciw. Dynamic Sensor Management Using Multi Objective Particle Swarm Optimizer[ C]. Muhisensor, Multi-source Information Fusion: Architectures, Algorithms, and Applications 2004, Proc. of SPIE, Vol. 5434, 2004: 205-216.
  • 7S. Maheswararajah, S. Halgamuge. Sensor Scheduling for Target Tracking Using Particle Swarm Optimization [ C ]. IEEE Int. Conf. , 2006: 573-577.
  • 8Mingyue Feng, Xianqing Yi, Guohui Li, et al. Sensor Scheduling for Target Tracking in a Wireless Sensor Network Using Modified Particle Swarm Optimization[ C]. International Symposium on Computer Science and Computational Technology, 2008 : 156-159.
  • 9Bo Wang Wei An, Yi-yu Zhou. Research on Sensor Management Algorithm of Midcourse Object Tracking [ C ] . Proceedings of the 1^st International Workshop on Intelligent Systems and Applications, 2009 : 805- 808.
  • 10Y. Shi , R . Eberhart . Parameter Selection in Particle Swarm Optimization[ C ]. Proc. Int. Conf. Evol. Program, 1998: 591-600.

共引文献54

同被引文献232

引证文献11

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部