期刊文献+

葡聚糖对酸性矿山废水中次生铁矿物形成的影响 被引量:2

Effects of Dextran on Formation of Secondary Iron Minerals in AMD
下载PDF
导出
摘要 采用H2O2氧化Fe2+并供应4种不同浓度葡聚糖的方法,探讨在H2O2氧化体系中葡聚糖对次生铁矿物形成的影响。结果表明:葡聚糖对次生矿物的形成具有明显的抑制作用;随着葡聚糖浓度的提高,次生矿物内的Fe含量降低,而S含量没有显著变化,且所有处理的K含量均较低;没有葡聚糖处理的次生矿物XRD特征峰与黄钾铁矾吻合,而添加葡聚糖后形成的次生矿物的特征峰与施氏矿物吻合,但是所有处理的次生矿物的结晶度都不高;随着葡聚糖浓度的提高,次生矿物的颗粒尺寸降低,比表面积增加。因此,葡聚糖能够抑制次生矿物的合成,并且阻止次生矿物由施氏矿物向黄钾铁矾的转变。 In order to study the effects of different dextran concentrations on the formation of secondary iron minerals, ferrous iron was oxidized by adding H2 O2 under four different dextran concentrations. The results obtained were list as follows : ( 1 ) dextran restrained the formation of secondary minerals ; (2) with increasing dextran concentrations, Fe concentrations in secondary minerals decreased, while S concentration did not vary significantly. K concentrations in all treatments were extremely low; (3) XRD patterns of secondary minerals formed without dextran were well coincide with that of jarosite, while those formed with dextran were coincide with that of schwertmannite. But the crystalliza- tion of secondary minerals in all treatments was not very good; and (4) with increasing dextran concentrations, the particle sizes of secondary minerals decreased, while specific surface area increased. Therefore, dextran depresses the formation of secondary minerals, and restrains the transformation of schwertmannite to jarosite.
作者 黄姗 周立祥
出处 《矿物学报》 CAS CSCD 北大核心 2012年第1期166-171,共6页 Acta Mineralogica Sinica
基金 国家自然科学基金重点项目(批准号:40930738)
关键词 矿山废水 次生矿物 施氏矿物 黄钾铁矾 生物氧化体系 葡聚糖 acid mine drainage secondary iron hydroxysulfate schwertmammite potassium jarosite biooxidation system dextran
  • 相关文献

参考文献13

  • 1Barron J L, Lucking D R. Growth and maintenance of Thiobacillus ferrooxidans cells [ J ]. Applied and Environmental Microbiology, 1990, 56 : 2801-2806.
  • 2Pronk J T, Bruyn J C, Bos P, Kuenen J G.. Anaerobic growth of Thiobacillus ferrooxidans [ J ]. Applied and Environmental Microbiology, 1992, 58 : 2227-2230.
  • 3Nemati M, Webb C. A kinetic model for biological oxidation of ferrous iron by Thiobacillus ferrooxidans [J]. Biotechnol Bioeng, 1997, 53 : 478-486.
  • 4Nemati M, Harrison S T L, Hansford G S, Webh C. Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: A review on the kinetic aspects [ J]. Biochemical Engineering Journal, 1998, 1 : 171-190.
  • 5Boon M, Ras C, Heijnen J J. The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures [ J]. Applied Microbiology and Biotechnology, 1999, 51 : 813-819.
  • 6Sasaki K, Konno H. Morphology of jarosite-group compounds precipitated from biologically and chemically oxidized Fe ions [ J]. The Cana- dian Mineralogist, 2000, 38: 45-56.
  • 7Wang H M, Bigham J M, Tuovinen O H. Formation of schwertmannite and its transformation to .iarosite in the presence of acidophilic iron- oxidizing microorganisms [ J]. Materials Science and Engineering C, 2006, 26: 588-592.
  • 8王长秋,马生凤,鲁安怀,周建工.黄钾铁矾的形成条件研究及其环境意义[J].岩石矿物学杂志,2005,24(6):607-611. 被引量:40
  • 9Dutrizac J E. Factors affecting the precipitation of potassium jarosite in sulfate and chloride media [ JJ. Metallurgical and Materials Transac- thins B, 2008, 39: 771-783.
  • 10Sasaki K, Tsunekawa M, Konno H. Characterization of argentojarosite formed from biologically oxidized Fe3 + ions [ J ]. The Canadian Mineralogist, 1995, 33 : 1311-1319.

二级参考文献12

共引文献41

同被引文献23

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部