期刊文献+

静态水气分离器分离效率数值模拟 被引量:1

Numerical Simulation on Separation Efficiency of Static Gas/Liquid Separator
下载PDF
导出
摘要 目的评估某型静态水气分离器的分离效率。方法采用计算流体力学欧拉-拉格朗日方法对静态水气分离器进行了数值模拟,建立水滴均匀和非均匀粒径的分离效率统计模型,考查水滴直径、气流速度分布、重力等多个因素对分离效率的影响。结果分离效率的计算值与试验值平均误差小于15%;给定入口气流速度分布,分离效率随着粒径的增大而提高;给定径向和切向速度,分离效率随轴向速度变化显著;考虑重力影响时的分离效率较高,粒径越大影响越明显。结论数值模型和方法合理,为该静态水气分离器性能改进提供了参考依据,并为其它形式的水气分离器性能分析提供了有效的数值方法。 Objective To evaluate the separation efficiency of certain static gas/liquid separator.Methods This paper adopted computational fluid dynamics Euler-Lagrange method to conduct numerical simulation on static gas/liquid separator.The statistical model of separation efficiency of uniform and non uniform droplet size was established.It examined how factors such as droplet diameter,flow velocity,and gravity had influenced separation efficiency.Results Calculated value and experimental value of separation efficiency varied less than 15%.Given a consistent air velocity distribution of inlet,separation efficiency increased with the increase of droplet size.Given consistent radial and tangential velocity,separation efficiency changed significantly in accordance with axial velocity.Separation efficiency was higher under the influence of gravity.The bigger droplet size the greater impact was.Conclusion This numerical model and its method are reasonable and can provide reference for the performance improvement of certain static gas/liquid separator.It also provides effective numerical method for performance analysis of other forms of gas/liquid separators.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2012年第1期61-65,共5页 Space Medicine & Medical Engineering
关键词 环境控制与生命保障系统 静态水气分离器 分离效率 数值模拟 欧拉-拉格朗日方法 environment control and life support system static gas/liquid separator separation efficiency numerical simulation Euler-Lagrange method
  • 相关文献

参考文献8

  • 1Tegrotenhuis WE.Normal gravity testing of a microchannelphase separator for insitu resource utilization[R].NASA.CR-2001-210955,2001:1-18.
  • 2Shoemaker JM.Microgravity fluid separation physics-experi-mental and analytical results[C].In:American Institute ofAeronautics and Astronautics,Inc.AIAA Paper 97-0886,1997,2-12.
  • 3Ahn H,Tanaka K,Tsuge H,et al.Centrifugal gas-liquid sep-aration under low gravity conditions[J].Separation and Purifi-cation Technology,2000,19(1-2):121-129.
  • 4Westermann H,Müller R.Design validation-via parabolic flighttests-of a condensate buffer equalizing a discontinuous gas/wa-ter flow between a condensing heat exchanger and a water sepa-rator[R].U.S.A.:Society of Automotive Engineers,Inc.SAE Technical Paper Series,2006-01-2087,2006,200-207.
  • 5Hoyt NC,Kamotani Y,Kadambi J.Computational Investiga-tion of the NASA Cascade Cyclonic Separation Device[C].In:American Institute of Aeronautics and Astronautics,Inc.AIAAPaper 2008-809,2008:1-10.
  • 6王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.126-131,147-148.
  • 7Haider A,Levenspiel O.Drag coefficient and terminal velocityof spherical and nonspherical particles[J].Journal of PowderTechnology,1989,8(1):63-70.
  • 8Zhang WW,Yang CX,Ke P.Computational Investigation ofthe High Pressure Water Separator[C].In:The proceedings of2010 Asia-Pacific International Symposium on Aerospace Tech-nology,China:Chinese society of aeronautics and astronautics,2010:99-103.

共引文献1223

同被引文献33

  • 1卜掰瑁.曹军,杨晓林.载人航天器气液分离技术综述[J].航天器工程.201.1,23(2):121-131.
  • 2HOYT N C. The performance of passive cyclonic separa- tors in microgravity[D]. Cleveland: Case Western Re- serve University, 2013.
  • 3WESTERMANN H, Mf,)LLER R. Design validation -via parabolic flight tests of a condensate buffer equalizing a discontinuous gas/water flow between a condensing heat exchanger and a water separator: SAE 2006-01-2087[R]. Warrendale: SAE, 2006.
  • 4HOYT N C, KAMOTANI Y, KADAMBI J. Computa- tional investigation of the nasa cascade cyclonic separation device: AIAA-2008-0809[R]. Reton, AIAA. 2008.
  • 5张文伟,杨春信,王哗.直通旋风式高压水分离器性能研究[c]//中国航空学会2009年第八届环控暨人机工效学术交流会议论文集.北京:中国航空学会,2009:407-411.
  • 6ZHANG W W, YANG C X, KE P. Computational inves tigation of the high pressure water separator[C]//Asia-Pa cific International Symposium on Aerospace Technology Beijing: Chinese Society of Aeronautics and Astronautics 2010 99-103.
  • 7STRUBELJ L, TISELJ I. Two-fluid model with interface sharpening[J]. International Journal for Numerical Meth- ods in Engineering, 2010, 85(5): 575-590.
  • 8MINATO A, TAKAMORI K, ISHIDA N. An extended two-fluid model for interface behavior in gasqiquid two- phase flow[C]//Proceedings of the 8th International Con- ference on Nuclear Engineering. New York ASME, 2000 : 1-9.
  • 9STRUBELJ L, TISELJ I, MAVKO B. Simulations of free surface flows with implementation of surface tension and interface sharpening in the two-fluid model[J]. Inter- national Journal of Heat and Fluid Flow, 2009, 30 (4) 741-750.
  • 10HOHNE T, VALLIE C. Experiments and numerical simulations of horizontal two-phase flow regimes using an interfacial area density model [J]. Journal of Comput ational Multiphase Flows, 2010, 2(3): 131 143.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部