期刊文献+

非正态分布的连续体结构可靠性拓扑优化设计 被引量:2

The Reliability-based Topological Optimization Design of Continuum Structural with Abnormal Distribution
下载PDF
导出
摘要 由于具有不确定性参数的连续体结构普遍存在,因此研究不确定性参数连续体结构的可靠性拓扑优化问题具有十分重要的意义。在基本随机变量前四阶矩已知的情况下,利用四阶矩技术以及有限元方法求解连续体结构的可靠度,对隐式的可靠度约束进行显式化处理。将连续体的拓扑优化设计视为一种对单元的模式识别,将模式识别领域的K邻近方法引入到连续体结构拓扑优化设计领域,以结构的单元应力作为识别的变量,利用应力的欧拉距离作为判别的标准,对连续体结构进行可靠性拓扑优化设计。通过数值算例与确定性设计结果进行对比,结果表明,考虑了可靠度影响的拓扑优化结果要优于确定性参数的优化结果,同时表明该计算方法是可行的。 Because of the continuum structural with uncertainty is common,the research of reliability-based topology optimization is of great significance.Techniques from the fourth prime matrix and the finite element method are employed to present the practical and effective method for the reliability-based topology optimization for continuum structural with abnormal distribution parameters in the case of given the first-forth moments of basic random variables.The topology optimization is described as pattern recognition to element and the K nearest neighbor method is extracted from the technique of pattern recognition to seek the optimized result with the element stress as variable and Euclidean distance of stress as recognition standard.Several numerical examples given to compare with optimized results with deterministic indicate that the approach proposed is a convenient and practical method.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第3期154-158,共5页 Journal of Mechanical Engineering
基金 长江学者和创新团队发展计划(IRT0816) 国家科技重大专项(2010ZX04014-014) 国家自然科学基金(51135003 50875039) '十一五'国家科技支撑计划(2009BAG12A02-A07-2)资助项目
关键词 连续体 拓扑优化 K邻近 四阶矩技术 可靠度 Continuum Topology optimization K nearest neighbor Fourth prime matrix Reliability
  • 相关文献

参考文献8

二级参考文献69

共引文献150

同被引文献24

  • 1Bendsoe M P, Kikuchi N. Generating Optimal To- pologies in Structural Design Using a Homogeniza- tion Method[J]. Computer Methods in Applied Me- chanics and Engineering, 1988,71 ( 1 ) : 197-224.
  • 2Bendsoe M P, Sigmund O. Material Interpolation Schemes in Topology Optimization[J]. Archive of Applied Mechanics, 1999,69(9) : 635-654.
  • 3Xie Y M,Steven G P. A Simple Evolutionary Proce- dure for Structural Optimization[J]. Computers and Structures, 1993,49 ( 5 ) : 885-896.
  • 4Querin O M, Yong V,Steven G P,et at. Computa- tional Efficiency and Validation of Bi-directional Ev- olutionary Structural Optimization [J]. Computer Methods in Applied Mechanics and Engineering, 2001,189(2) :559-573.
  • 5Sethian J A,Wiegmann A. Structural Boundary De- sign via Level Set and Immersed Interface Methods[J]. Journal for Numerical Method in Engineering, 2003,57(8) :1177-1196.
  • 6Kharmanda G, Olhohoff N, Mohamed A, et al. Reli- ability- based Topology Optimization[J]. Structural and Multidisciplinary Optimization, 2004, 26 ( 5 ) : 295-307.
  • 7Kwang S Y, Eom Y S, Park J Y, et al. Reliability- based Topology Optimization Using Successive Standard Response Surface Method[J]. Finite Ele- ment in Analysis and Design,2011,47(7):843-849.
  • 8Kwang S Y,Yong S E,Jae Y P,et al. Reliability- based Topology Optimization Using a Standard Response Surface Method for Three-dimensional Structures [J]. Structural and Muhidisciplinary Optimization,2011,43(2) :287-295.
  • 9Chwail K,Semyung W. Reliability-based Topology Op timization with Uncertainties[J]. Journal of Mechanical Science and Technology, 2006,20 (4:) : 494-504.
  • 10Maute K, Frangopol D M. Reliability-based Design of MEMS Mechanisms by Topology Optimization[J]. Computers and Structures,2003,81(8) :813-824.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部