期刊文献+

New Approaches and Markers for Identifying Secondary Biogenic Coalbed Gas 被引量:4

New Approaches and Markers for Identifying Secondary Biogenic Coalbed Gas
下载PDF
导出
摘要 According to the adsorption-desorption characteristics of coalbed gas and analysis of various experimental data, this paper proposes that the generation of secondary biogenic gas (SBG) and its mixing of with the residual thermogenic gas at an early stage inevitably lead to secondary changes of the thermogenic gas and various geochemical additive effects. Experimental results also show that the fractionation of the carbon isotope of methane of coal core desorption gas changes very little; the δ13C1 value of the mixed gas of biogenic and thermogenic gases is between the δ13C1 values of the two "original" gases, and the value is determined by the carbon isotopic compositions and mixing proportions of the two "original" methanes. Therefore this paper proposes that the study on the secondary changes of the thermogenic gas and various additive effects is a new effective way to study and identify SBG. Herein, a systematic example of research on the coalbed gas (Huainan coalbed gas) is further conducted, revealing a series of secondary changes and additive effects, the main characteristics and markers of which are: (1) the contents of CO2 and heavy-hydrocarbons decrease significantly; (2) the content of CH4 increases and the gas becomes drier; (3) the δ13C and δD values of methane decrease significantly and tend to have biogenetic characteristics; and (4) the values of 513C2 and δ13Cc02 grow higher. These isotopic values also change with the degradation degrees by microbes and mixing proportions of the two kinds of gases in different locations. There exists a negative correlation between the △13C1 It'S δ13Cco2 values. The δ13Cc2-c1 values obviously become higher. The distributions of the △δ^13Cco2-C1 values are within certain limits and show regularity. There exist a positive correlation between the N2 versus Ar contents, and a negative correlation between the N2 versus CH4 contents, indicating the down forward infiltration of the surface water containing air. These are important markers of the generation and existence of SBG . According to the adsorption-desorption characteristics of coalbed gas and analysis of various experimental data, this paper proposes that the generation of secondary biogenic gas (SBG) and its mixing of with the residual thermogenic gas at an early stage inevitably lead to secondary changes of the thermogenic gas and various geochemical additive effects. Experimental results also show that the fractionation of the carbon isotope of methane of coal core desorption gas changes very little; the δ13C1 value of the mixed gas of biogenic and thermogenic gases is between the δ13C1 values of the two "original" gases, and the value is determined by the carbon isotopic compositions and mixing proportions of the two "original" methanes. Therefore this paper proposes that the study on the secondary changes of the thermogenic gas and various additive effects is a new effective way to study and identify SBG. Herein, a systematic example of research on the coalbed gas (Huainan coalbed gas) is further conducted, revealing a series of secondary changes and additive effects, the main characteristics and markers of which are: (1) the contents of CO2 and heavy-hydrocarbons decrease significantly; (2) the content of CH4 increases and the gas becomes drier; (3) the δ13C and δD values of methane decrease significantly and tend to have biogenetic characteristics; and (4) the values of 513C2 and δ13Cc02 grow higher. These isotopic values also change with the degradation degrees by microbes and mixing proportions of the two kinds of gases in different locations. There exists a negative correlation between the △13C1 It'S δ13Cco2 values. The δ13Cc2-c1 values obviously become higher. The distributions of the △δ^13Cco2-C1 values are within certain limits and show regularity. There exist a positive correlation between the N2 versus Ar contents, and a negative correlation between the N2 versus CH4 contents, indicating the down forward infiltration of the surface water containing air. These are important markers of the generation and existence of SBG .
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第1期199-208,共10页 地质学报(英文版)
基金 supported by the Chinese Natural Science Foundation Project(No.41172107 and No.40872096) the 973 National Project(No.2002CB211701)
关键词 secondary biogenic gas thermogenic coalbed gas components and isotopes secondary change mixing effect differentiating markers secondary biogenic gas, thermogenic coalbed gas, components and isotopes, secondary change, mixing effect, differentiating markers
  • 相关文献

参考文献8

二级参考文献52

共引文献127

同被引文献73

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部