摘要
在空气中用高频高压电子加速器辐照多壁碳纳米管(MWCNTs),采用红外光谱、能谱分析、拉曼光谱和透射电镜表征分析辐照处理对碳纳米管结构的影响;通过原位复合法制备MWCNT/环氧树脂(EP)复合材料。采用场发射扫描电镜、热失重分析和动态力学分析研究辐照处理MWCNTs对环氧树脂热稳定性的影响。结果表明:电子束辐照处理使MWCNTs表面接入了少量的含氧基团,同时破坏了MWCNTs的完整结构,当辐照剂量为170 kGy时,接枝含氧基团的量最多(约为4%),且结构破坏程度较小。与原始MWCNT/EP体系相比,经电子束辐照处理后的MWCNTs在EP中分散得更均匀,并能使材料的最大热分解温度和玻璃化转变温度较纯EP有所提高,在EP中加入质量分数0.5%的经170kGy辐照处理后的MWCNTs,能够使材料的最大热分解温度和玻璃化转变温度分别提高约14℃和8℃。
Multi-walled carbon nanotubes (MWCNTs) were irradiated to different doses by high-energy electron beams. The structure of the irradiated MWCNTs was characterized by Fourier transform infrared spectroscopy, X-ray energy dispersion spectroscopy, Raman spectroscopy and transmission electron microscopy. MWCNT/ epoxy composites were prepared by a cast-molding method. The effect of the irradiation on the properties of the composites was studied by scanning electron microscopy, thermogravimetry and dynamic mechanical analysis. Results showed that oxygen-containing groups were covalently bonded on the MWCNTs. The MWCNTs were collapsed and even broken after irradiation. The percentage of the oxygen-containing groups had a maximum of 4% at a radiation dose of 170kGy. It was found that the irradiated MWCNTs could be easily dispersed in epoxy resin. Addition of 0.5 mass% MWCNTs irradiated with 170kGy to epoxy resin improved the glass transition temperature and the initial decomposition temperature by 8 and 14 °C, respectively.
出处
《新型炭材料》
SCIE
EI
CAS
CSCD
北大核心
2012年第1期67-73,共7页
New Carbon Materials
基金
国家自然科学基金资助项目(50873092)~~