期刊文献+

一种递归模糊神经网络的广义预测控制方法 被引量:2

An Generalized Predictive Control Using Recurrent Fuzzy Neural Network
下载PDF
导出
摘要 提出了一种递归模糊神经网络(RFNN),通过加入向量调节层,提高了网络对输入信息的处理能力。基于所设计的递归模糊神经网络,建立非线性系统的离散数学多步模糊预测模型,根据这一模型对系统的输出进行预测,然后利用预测控制算法得到相应的预测控制规律。仿真结果表明该方法具有较高的控制精度以及一定的抗干扰能力。 A kind of recurrent fuzzy neural network(RFNN) is constructed,in which,the a bility of the input information handling is enhanced by adding the vector adjustment layer.Based on the designed recursion fuzzy neural network,nonlinear system's discrete mathematics multi-step fuzzy forecast model is established.This model is used to forecast the system's output,and the corresponding forecast control law is obtained by the existing predictive control algorithm.The simulation result indicates that this method has the high control precision as well as moderate certain anti-interference ability.
作者 李国勇 刘鹏
出处 《太原理工大学学报》 CAS 北大核心 2012年第1期11-15,共5页 Journal of Taiyuan University of Technology
基金 山西省自然科学基金资助项目(2011011011-1)
关键词 归模糊神经网络 向量调节 广义预测控制 非线性 recurrent fuzzy neural network vector adjustment generalized predictive control nonlinear
  • 相关文献

参考文献6

  • 1Clarke D W, Mohtadi C, Turfs P S. Generalized predictive control[J]. Automatica, 1987, 23(2) : 137-160.
  • 2Lu Chi-Huang, Tsai Ching-Chih. Generalized predictive control using recurrent fuzzy neural networks for industrial processes [J]. Journal of Process Control, 2007,17 : 83-92.
  • 3Wang Shuangxin, Zhang Xiuxia, Wang Zhiqin, et al. Online fuzzy identification of thermal systems based on an improved T S model[C]. Proc of Int Conf on Modeling,Identification and Control. Okayama, 2010: 47-52.
  • 4Deng Xingsheng,Wang Xinzhou. Incremental learning of dynamic fuzzy neural networks for accurate system modeling[J]. Fuzzy Sets and Systems, 2009,160 :972-987.
  • 5Wang Shuangxin, Zhang Xiuxia, Wang Zhiqin, et al. Online fuzzy identification of thermal systems based on animproved T- S model[C]. Proc of Int Conf on Modeling,Identification and Control. Okayama, 2010: 47-52.
  • 6王寅,荣冈,王树青.基于T-S模糊模型的非线性预测控制策略[J].控制理论与应用,2002,19(4):599-603. 被引量:22

二级参考文献1

共引文献21

同被引文献19

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部