期刊文献+

基于插值重采样的信号FFT分析方法研究 被引量:2

Research on Fast Fourier Transform Algorithm Based on Interpolation Re-sampling Method
下载PDF
导出
摘要 针对实际信号做频谱分析时通常不能满足经典FFT算法的待分析信号长度应为2的整数幂的约束条件,通常采用的增加信号采样时间或对信号补零的方法,会造成采样负荷加重或频率泄露。针对与此,提出了基于信号插值重采样的改进FFT分析算法,并与常用FFT算法进行了对比。经仿真结果验证,改进的算法能较好地在不增加信号采样负荷的前提下,精确捕获信号真实频率特性。并将改进的FFT算法应用于实际水电机组振动信号分析,频谱分析与现场真实情况相符,证明基于插值重采样的FFT算法的有效实用性。 Regarding that the actual signal while its frequency spectrum is analyzed usually doesn't meet the demand of radix-2 Fast Fourier Transform (FFT) which is only worked for the sequence length that is an integral power of 2, the methods of prolonging the sampling time or padding zero to the signal so that it fits for the algorithm are adopted, but these methods aggravate sampling load and cause omission of frequency at the same time. An improved FFT algorithm based on the linear interpolation method is given and compared with the common one herein. The simulation results show that the improved algorithm can precisely get the frequency characteristics of the signal without adding workload. The application of improved algorithm on the actual analysis of hydroelectric set vibration signal also shows that the results are consistent with the real situation.
出处 《水力发电》 北大核心 2012年第3期21-23,共3页 Water Power
基金 中央高校基本科研业务费资助项目(0117120964) 华中科技大学自主创新基金资助项目
关键词 FFT 频谱 插值重采样 Fast Fourier Transform(FFT) frequency spectrum interpolation re-sampling
  • 相关文献

参考文献3

二级参考文献19

  • 1管吉兴.FFT的FPGA实现[J].无线电工程,2005,35(2):43-46. 被引量:13
  • 2潘文,钱俞寿,周鹗.基于加窗插值FFT的电力谐波测量理论──(Ⅰ)窗函数研究[J].电工技术学报,1994,9(1):50-54. 被引量:178
  • 3蔡菲娜,左伍衡.改进的双速率同步采样法及其傅里叶变换[J].浙江大学学报(工学版),2005,39(3):414-417. 被引量:13
  • 4CHEN Yuan, LIN Yu-wei, TSAO Yu-chi, et al. A 2. 4- Gsample/s DVFS FYT Processor for MIMO OFDM Communication Systems [ C ] . IEEE Journal of Solid-state Circuits,2008 : 1260 - 1266.
  • 5OPPENHEIM A V, WILLSKY A S. Signals and Systems [ M ]. Prentice - Hall, 1983.
  • 6程培青.数字信号处理教程[M].北京:清华大学出版社,1995.
  • 7林雪海 孙树勤.电力网中的谐波[M].北京:中国电力出版社,2000..
  • 8吕润馀.城市电网谐波手册[M].北京:中国电力出版社,1999.
  • 9ANDRIA G,SAVINO M,TROTTA A.Windows and interpolation algorithms to improve electrical measurement accuracy[J].IEEE Tans IM,1989,38(8):856-863.
  • 10FERRERO A, OTTOBONI R. High accuracy Fourier analysis based on synchronous sampling techniques [J]. IEEE Transactions on Instrument and Measurement, 1992, 41(6):780-785.

共引文献34

同被引文献14

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部