期刊文献+

含精英策略的小生境遗传退火算法研究及其应用 被引量:6

Research on Niche Genetic Annealing Algorithm with Elite Strategy and Its Applications
下载PDF
导出
摘要 针对传统遗传退火算法的缺陷,提出了小生境遗传退火算法,该算法引入小生境技术,避免了搜索初期有效基因的缺失,保证了解的多样性;引入了自适应双点交叉和互换变异策略,克服了算法交叉和变异概率固定不变导致的求解过程较长和易收敛于局部最小值的缺陷;引入精英保留策略,有效地避免了最优解的丢失,加快了进化速度;通过3个经典函数测试,并将其应用于Job Shop调度问题,仿真实验结果表明:新算法有效克服了停滞现象,增强了全局搜索能力,比遗传算法和传统遗传退火算法的寻优性能更佳。 According to the defects of traditional genetic annealing algorithm,a niche genetic annealing algorithm was presented,which avoided the effective gene deletions at the early search stage and guaranteed the diversity of solution.Then adaptive double point crossover and swap mutation strategy were introduced to overcome the defects of long solving process and easily converging local minimum value due to the fixed crossover and mutation probability.The elite reserved strategy was imported,optimal solution missing was avoided effectively,evolution speed was accelerated.At last,the new algorithm was tested by three typical functions and the job shop scheduling problems,respectively.The simulation results show that the proposed algorithm can avoid the stagnation,improve the global convergence ability,and attain better optimization performance.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2012年第5期556-563,共8页 China Mechanical Engineering
基金 国家自然科学基金资助项目(71071173) 新世纪优秀人才支持计划资助项目(NCET-07-0908) 高等学校博士学科点专项科研基金资助项目(20090191110004) 中央高校基本科研业务费资助项目(CDJZR10110012)
关键词 遗传模拟退火算法 小生境 作业车间调度 仿真 genetic simulated annealing algorithm niche job shop scheduling simulation
  • 相关文献

参考文献11

二级参考文献52

  • 1马晋弢,杨以涵.遗传算法在电力系统无功优化中的应用[J].中国电机工程学报,1995,15(5):347-353. 被引量:144
  • 2徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学(E辑),1996,26(4):364-375. 被引量:99
  • 3Park J S, Shazzad K M, Kim D S. Toward modeling lightweight intrusion detection system through correlation based hybrid feature selection[ C ]//Proceedings of the CISC, Heidelberg: Springer- Verlag, 2005:279 - 289.
  • 4Jaln A K, Zongker D. Feature selection: Evaluation, application, and small sample performance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (2) : 153 - 158.
  • 5Kudo M, Sklansky J. Comparison of algorithms that select features for pattern classifiers [ J ]. Pattern Recognition, 2000, 33 (1):25-41.
  • 6Holland J. Adaptation in natural and artificial systems[M]. Ann Arbor: University of Michigan Press, 1975.
  • 7Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans System, Man and Cybernetics, 1994, 24(4) : 656 - 667.
  • 8Kirkpatrick S, Gellatt C D, Vechi M R. Optimization by simulated annealing[J]. Science, 1983, 220:671 - 680.
  • 9Kennedy J,Eberhart R. Particle swarm optimization [C]// IEEE Int Conf on Nural Networks. Perth, Austrlia: IEEE Service Centre, 1995:1942-1948.
  • 10Eberhart R C,Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization [C]//Proeeedings of the IEEE Congress on Evolutionary Computation. California : IEEE Service Centre, 2000 : 84-88.

共引文献127

同被引文献73

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部