期刊文献+

基于多线索概率分布图像融合的目标跟踪 被引量:1

A Novel Visual Object Tracking Algorithm Based on Multiple Clues Probability Distribution Image Fusion
下载PDF
导出
摘要 为了克服多线索目标跟踪中固定线索权值的不足,提出采用颜色、运动历史、视觉显著性等多种概率分布图像来描述目标的观测信息,通过目标在前一帧的位置确定中心区域和周边区域,并计算不同概率分布图像基于这两个区域的直方图,即中心直方图和周边直方图.每个概率分布图像的置信度由其中心直方图和周边直方图的差异度来描述.根据不同线索的置信度,在线调节当前帧各种概率分布图像在目标位置判断中所占的权重,实现对目标的多线索融合跟踪.实验结果表明,比常用的固定线索权值的融合算法效果更好. In order to overcome shortcoming of fixed clues weight,Different features are used to generate a set of likelihood maps for each pixel indicating the probability of that pixel belonging to foreground object or scene background.The confidence score of each likelihood map is computed based on distinction of histograms of likelihood values on the object versus values from the surrounding background region,measured from the likelihood map of the previous frame.The evidence combination framework dynamically updates the weights such that,in the fused likelihood map,discriminative foreground/background information is preserved while ambiguous information is suppressed.Experimental comparisons demonstrate the proposed method outperform the classical fixed clues Weight fusion technique.
作者 李子龙 鲍蓉
出处 《微电子学与计算机》 CSCD 北大核心 2012年第3期22-25,共4页 Microelectronics & Computer
关键词 目标跟踪 多线索融合 概率分布图像 置信度 visual object tracking multiple clues fusion probability distribution image confidence score
  • 相关文献

参考文献8

二级参考文献33

  • 1田力伟,黄建国.粒子滤波在机动目标纯方位跟踪中的应用[J].微电子学与计算机,2005,22(10):81-84. 被引量:6
  • 2焦荣惠,郭立,郭利生.一种改进的运动估计算法[J].微电子学与计算机,2006,23(12):213-215. 被引量:3
  • 3孙中森,孙俊喜,宋建中,乔双.一种抗遮挡的运动目标跟踪算法[J].光学精密工程,2007,15(2):267-271. 被引量:30
  • 4Bradski G R. Computer vision face tracking as a component of a perceptual user interface [ C ]//Proceedings Fourth IEEE Workshop Applications of Computer Vision. Berlin,Germany, 1998:214- 219.
  • 5Bogdan Kwolek. CamShift - based tracking in joint color - spatial spaces[J]. Computer Analysis of Images and Patterns, 2005 (3691 ) : 693 - 700.
  • 6Zhaowen Wang, XiaoKang Yang, Yi Xu. CamShift guided particle filter for visual tracking [ C ]//Signal Processing Systems. China: Shanghai: IEEE Workshop, 2007:301 - 306.
  • 7Fukanaga K, Hostetler L D. The estimation of the gradient of a density function, with applications in pattern recognition[ J ]. IEEE Trans Information Theory, 1975,21 (1):32-40.
  • 8Cheng Y. Mean shift, mode seeking ,and clustering[J]. IEEE Transaction on pattern analysis and machine intelligence, 1995,17(8):790 - 799.
  • 9John G Allen, Richard Y D. Object tracking using camshift algorithm and multiple quantized feature! spaces[C]//Proc. 2003 Pan - Sydney Area Workshop on Visual Information Processing. Australia, Sydney, 2004: 3 - 7.
  • 10Comaniciu D, Ramesh V, Meer P. Kernel - based object tracking [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2003,25 (5) : 564 - 577.

共引文献8

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部