期刊文献+

基于模糊聚类的Linux网络动态入侵检测

Based on the Fuzzy Clustering Linux Network Dynamic Intrusion Detection
下载PDF
导出
摘要 提出基于模糊聚类的Linux系统异常入侵检测方式,通过对网络动态信息进行分类检测,能够降低入侵检测的漏检率,动态检测出网络数据入侵程序,避免了传统方式的缺陷.实验证明,利用基于模糊聚类的入侵检测方式能够快速、准确的检测出入侵程序,保证Linux系统安全. In order to improve the security of the system,make the fuzzy clustering Linux system anomaly intrusion detection mode,through the network information classification the dynamic test,can reduce the intrusion detection miss rate,dynamic to detect the network data flow under the condition of the invasion of the larger program,avoid the traditional way of intrusion detection.It is proved by experiment based on fuzzy clustering of intrusion detection means to be able to quickly and accurately,to detect the invasion and procedures to ensure the Linux system system security.
出处 《微电子学与计算机》 CSCD 北大核心 2012年第3期136-139,共4页 Microelectronics & Computer
基金 教育部高职委资助项目(JJ-200901) 河北省教育厅教学改革立项支持项目(103004)
关键词 模糊聚类 相关数据集合 入侵检测 fuzzy clustering related data sets intrusion detection
  • 相关文献

参考文献6

  • 1王玉锋,范明钰,王绪本,徐海梅.入侵检测系统的研究[J].计算机仿真,2004,21(5):99-102. 被引量:8
  • 2Ee C T,Ratnasamy S,Shenker S.Practical data-cen-tric storage[C]∥Proceedings of the 3rd Conference onNetworked Systems Design&Implementation.SanJose,CA:IEEE,2006:137-142.
  • 3李权,周兴社.基于KPCA的多变量时间序列数据异常检测方法研究[J].计算机测量与控制,2011,19(4):822-825. 被引量:14
  • 4Kim S,Fonseca R,Dutta P,et al.Flush:a reliablebulk transport protocol for multihop wireless networks[C]∥Proceedings of the 5th international Conferenceon Embedded networked Sensor Systems.New York,NY,USA:ACM,2007.
  • 5Mao Y,Wang F,Qiu L,et al.S4:small state andsmall stretch routing protocol for large wireless sensornetworks[C]∥Proc of the USENIX NSDI Conf,Cam-bridge,MA:IEEE,2007.
  • 6Musaloiu-E R,Liang C-J,Terzis A.Koala:Ultra-lowpower data retrieval in wireless sensor networks[C]∥Proc of the International Conference on InformationProcessing in Sensor Networks(IPSN 2008).st Lou-is,Mo:IEEE,2008:421-432.

二级参考文献18

  • 1王和勇,姚正安,李磊.基于聚类的核主成分分析在特征提取中的应用[J].计算机科学,2005,32(4):64-66. 被引量:20
  • 2修宇,王士同,吴锡生,胡德文.方向相似性聚类方法DSCM[J].计算机研究与发展,2006,43(8):1425-1431. 被引量:21
  • 3Baragona R,Battaglia F.Outlier detection in multivariate time series by Independent Component Analysis[J].Neural Computation,2007,19 (1):1962-1984.
  • 4Last M,Kandel A,Bunke H,Data mining in time series databases[M].World Scientific Publishing,Co.Pte.Ltd.,2004,101-126.
  • 5Yamanlsh K,Takeuch J.A unifying framework to detecting outliers and change-points from nonstationary data[C].Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2002).New York:ACM Press,2002:676-681.
  • 6Jagadish H V,Koudas N,Muthukrishnan S.Mining deviantsin a time series database[A].Proceedings of 25th International Conference on Very Large Data Bases (VLDB' 99)[C].Edinburgh,Scotland,UK,1999:102-113.
  • 7Kotsakis E,Wolski A.MAFS:a method for identifying and predicting aberrant behaviour in time series[A].Proc 14th Internat Conf oil Industrial and Engineering Applications of Artificial Intelli gence and Expert Systems[C].Budapest,Hungary,2001:314-325.
  • 8Hawkins D.Identification of outliers[M].London:Chapman and Hall,1980.
  • 9Knorr E M,Ng R T.A Unified notion of oufliers:propeies and computation[A].ICDM97[C].AAAI Press,1997:219-222.
  • 10Breunig M M,Kriegel H P,Ng R,et a.LOF:identifying density-based local outliers[C].ACM SIGMOD,2000:93-104.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部