摘要
提出基于模糊聚类的Linux系统异常入侵检测方式,通过对网络动态信息进行分类检测,能够降低入侵检测的漏检率,动态检测出网络数据入侵程序,避免了传统方式的缺陷.实验证明,利用基于模糊聚类的入侵检测方式能够快速、准确的检测出入侵程序,保证Linux系统安全.
In order to improve the security of the system,make the fuzzy clustering Linux system anomaly intrusion detection mode,through the network information classification the dynamic test,can reduce the intrusion detection miss rate,dynamic to detect the network data flow under the condition of the invasion of the larger program,avoid the traditional way of intrusion detection.It is proved by experiment based on fuzzy clustering of intrusion detection means to be able to quickly and accurately,to detect the invasion and procedures to ensure the Linux system system security.
出处
《微电子学与计算机》
CSCD
北大核心
2012年第3期136-139,共4页
Microelectronics & Computer
基金
教育部高职委资助项目(JJ-200901)
河北省教育厅教学改革立项支持项目(103004)
关键词
模糊聚类
相关数据集合
入侵检测
fuzzy clustering
related data sets
intrusion detection