期刊文献+

关于费玛曲线x^N+y^N=1的K_2群的一些注记(英文)

Some remarks on K_2 of Fermat curve x^N+y^N=1
下载PDF
导出
摘要 首先简单介绍了对于有理数域上光滑射影曲线的Beilinson猜想,然后应用椭圆簇的知识指出了存在于费玛曲线K2群中的一个元素,最后在费玛曲线X3这个特殊情形下,将其L-函数与Eisenstein-Kronecker-Lerch级数明确地联系起来,从而验证了其L-函数满足的函数方程,以及它能在复平面上解析延拓的事实. We first review Beilinson's conjecture for a smooth projective curve C over Q.Then we exhibit an element in K2-group of the Fermat curve XN:xN+yN=1 from a toric variety viewpoint.Finally,we focus on the special case of X3 and explicitly express its Hasse-Weil L-function L(X3,s) in terms of the Eisenstein-Kronecker-Lerch series,which allows us to verify that L(X3,s) satisfies a certain functional equation and has a meromorphic continuation in the entire complex plane.
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2012年第2期154-161,共8页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 Supported by National NSFC(11071247)
关键词 Beilinson猜想 K2群 费玛曲线 椭圆簇 CM椭圆曲线 L-函数 Eisenstein-Kronecker-Lerch级数 Beilinson's conjecture K2-group Fermat curve toric variety CM elliptic curve Hasse-Weil L-function Eisenstein-Kronecker-Lerch series
  • 相关文献

参考文献15

  • 1Bloch S. Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, volume 11 of CRM monograph series [ M ]. Providence, RI: American Mathematical Society, 2000.
  • 2Ramakrishnan D. Regulators, algebraic cycles, and values of L-functions [ C ]//Stein M R, Dennis R K( ed). Algebraic K-theory and Algebraic Number Theory Contemporary Mathematics, vol 83. Providence, RI: American Mathematical Society, 1989: 153-310.
  • 3Dokchitser T, de Jeu R, Zagier D. Numerical verification of Beilinson's conjecture for K2 of hyperelliptic curves[ J]. Comp Math, 2006, 142(2) :339-373.
  • 4Milnor J. Introdunction to algebraic K-theory, annals of matematics studies, 72 [ M ]. Princeton, NJ: Princeton Unipersty Press, 1971.
  • 5Ross R. K2 of Fermat curves with divisorial support at infinity[J]. Compositio Math, 1994, 91: 223-240.
  • 6Ross R. K2 of Fermat cureves and values of L-functions[J]. C R Acad Sci Paris, t 312, Serie I, 1991 : 1-5.
  • 7Kimura K. K2 of Fermat quotient and the values of its L-functoin[ J]. K-Theory, 1996, 10: 73-82.
  • 8Bloch S, Grayson D. K2 and L-functions of elliptic curves[ Jl. Contemp Math, 1996, 55: 79-88.
  • 9Cox D. What is a toric variety[ C] //Goldman R, Krasauskas R (ed). Algebraic Geometry and Geometric Modeling, Contemporary Mathematics 334. Providence, RI: American Mathematical Society, 2003: 203-223.
  • 10Fulton W. Introduction to toric varieties, annals of matematics studies, 131 [ M]. Princeton, N J: Princeton Unipersty Press, 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部