摘要
利用二元Lagrange插值公式对一类二元有理插值函数的存在性给出了一个判别方法,并在判别出该二元有理插值函数存在时,给出了它的表现公式。此外,对导致二元有理插值函数不存在的不可达点,本文给出了一种处理方法,使之由不可达点变成可达点。文章的最后还给出若干数值例子说明了本方法的有效性.
This paper gives a method to test the existence for a class of bivariate rational interpolation by making use of bivariate Lagrange interpolation formula , and presents the explicit expression of the bivariate rational interpolant when it exists . In addition , a means for dealing with the unattainable points is also given in this paper . At the end of this paper , some numerical examples are given to illustrate the above methods .
出处
《大学数学》
2012年第1期67-72,共6页
College Mathematics
基金
安徽省自然科学基金资助项目(070416227)
国家自然科学基金资助项目(60473114)