期刊文献+

两个参数的Hilbert型积分不等式

Hilbert-type Integral Inequality with Tow Parmeters
下载PDF
导出
摘要 通过引入权函数的方法,得到了一个带两个参数的Hilbert型积分最佳不等式及其等价形式. By introducing the weight function, we obtain a'Hilbert-type integral inequality with two parameters and the equivalent form with a best constant factor.
作者 付向红
出处 《大学数学》 2012年第1期114-118,共5页 College Mathematics
关键词 HILBERT型积分不等式 权函数 Hǒlder不等式 Hilbert-type integral inequality weight function Holder inequality
  • 相关文献

参考文献2

二级参考文献14

  • 1[1]Hardy G H, Littlewood J E, Polya G. Inequalities[M]. Cambridge Univ Press Cambridge, 1952
  • 2[2]Mitrinovic D S, Pecaric J E, Fink A M. Inequaliyies involving functions and their integrals and derivatives[M]. Kluwer Academic Publishers Boston, 1991
  • 3[4]Yang B C. On Hardy-Hilbert's integral inequality[J]. J Math Anal Appl, 2001;261:295-306
  • 4[5]Kuang J C, Debnath L. On new generalizations of Hilbert's inequality and their applications[J]. J Math Anal Ap pl,2000;245:248-265
  • 5Gao M.,Yang B.,On the extended Hilbert's inequality,Proc.Amer.Math.Soc.,1998,126:751-759.
  • 6Yang B.,Debnath,L.,On new strengthened Hardy-Hilbert's inequality,Iternat.J.Math.Sci.,1998,21:403-408.
  • 7Kuang,J.,On new extensions of Hilbert's integral inequality,J.Math.Anal.& Appl.,1999,235:608-614.
  • 8Yang B,On an extension of Hardy-Hilbert's inequality,Chin.Ann.Math.,2002,23 (A):247-254.
  • 9Yang B,On a new inequality similar to Hardy-Hilbert's inequality,Math.Ineq.& Appl.,2003,6:37-44.
  • 10Mullholland,H.P.,Some theorems on Dirichlet series with positive coefficients and related integrals,Proc.London Math.Soc.,1929,29 (2):281-292.

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部