期刊文献+

Robust kernel-based tracking algorithm with background contrasting 被引量:3

Robust kernel-based tracking algorithm with background contrasting
原文传递
导出
摘要 The mean-shift algorithm has achieved considerable success in object tracking due to its simplicity and efficiency. Color histogram is a common feature in the description of an object. However, the kernel-based color histogram may not have the ability to discriminate the object from clutter background. To boost the discriminating ability of the feature, based on background contrasting, this letter presents an improved Bhattacharyya similarity metric for mean-shift tracking. Experiments show that the proposed tracker is more robust in relation to background clutter. The mean-shift algorithm has achieved considerable success in object tracking due to its simplicity and efficiency. Color histogram is a common feature in the description of an object. However, the kernel-based color histogram may not have the ability to discriminate the object from clutter background. To boost the discriminating ability of the feature, based on background contrasting, this letter presents an improved Bhattacharyya similarity metric for mean-shift tracking. Experiments show that the proposed tracker is more robust in relation to background clutter.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2012年第2期22-24,共3页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China (No. 60775022) the Ph.D. Programs Foundation of Ministry of Education of China (No.20090073110045)
关键词 Graphic methods Graphic methods
  • 相关文献

参考文献17

  • 1Y.Cheng, IEEE Trans.Pattern Anal.Mach.Intel.17, 790 (1995).
  • 2D.Comaniciu, IEEE Trans.Pattern Anal.Mach.Intel.25, 281 (2003).
  • 3B.Georgescu, I.Shimshoni, and P.Meer, in Proceedings of Ninth IEEE International Conference on Computer Vision 1, 456 ( 2003).
  • 4D.Comaniciu and P.Meer, IEEE Trans.Pattern Anal.Mach.Intel.24, 603 (2002).
  • 5D.Comaniciu, V.Ramesh, and P.Meer, IEEE Trans.Pattern Anal.Mach.Intel.25, 564 (2003).
  • 6I.Leichter, M.Lindenbaum, and E.Rivlin, Computer Vis.Image Undo 114, 400 (2010).
  • 7C.Shen, J.Kim, and H.Wang, IEEE Trans.Circ.Syst.Vid.20, 119 (2010).
  • 8P.Wang and H.Qiao, IEEE Trans.Circ.Syst.Vid.21, 156 (2011).
  • 9J.Tu, H.Tao, and T.Huang, in Proceedings of Interna?tional Conference on Computer Vision 3851,694 (2006).
  • 10C.Shen, M.Brooks, and A.Van Den Hengel, IEEE Trans.Image Process 16, 1457 (2007).

同被引文献26

  • 1Jaideep Jeyakar,R. Venkatesh Babu,K.R. Ramakrishnan.Robust object tracking with background-weighted local kernels[J]. Computer Vision and Image Understanding . 2008 (3)
  • 2Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2003
  • 3J. Ning,L. Zhang,D. Zhang.Robust mean-shift tracking with corrected background-weighted histogram. IET COMPUTER VISION . 2012
  • 4Qing Wang,Feng Chen,Wenli Xu.Object Tracking via Partial Least Squares Analysis. IEEE Transactions on Image Processing . 2012
  • 5Matthews I,Ishikawa T,Baker S.The template update problem. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2004
  • 6Dorin Comaniciu,Visvanathan Ramesh,Peter Meer.Real-time tracking of non-rigid objects using mean shift. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . 2000
  • 7C Yang,R Duraiswami,L Davis.Efficient mean-shift tracking via a new similarity measure. Computer Vision and Pattern Recognition . 2005
  • 8WU Yi,LIM Jong-woo,YANG Ming-hsuan.Online object tracking:a benchmark. Computer Vision and Pattern Recognition . 2013
  • 9Khalid MS,Malik MB.Biased nature of Bhattacharyya coefficient in correlation of gray-scale objects. International Symposium on Image and Signal Processing and Analysis . 2005
  • 10WANG C,KOMODAKIS N,PAR AGIOS N. Markovrandom field modeling,inference learning in computervision 8-- image understanding: A survey [J]. ComputerVision and Image Understanding,2013, 117 (11):1610-1627.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部