期刊文献+

二型模糊集的模糊熵研究 被引量:17

Study on fuzzy entropy of type-2 fuzzy sets
原文传递
导出
摘要 研究基于质心的二型模糊集的模糊熵和加权模糊熵,构造了两个二型模糊集的模糊熵度量.针对二型模糊集的特殊情形,提出一种新的区间值模糊集的模糊熵度量,既弥补了现有区间值模糊集退化为普通模糊集时熵为零的不足,又克服了两个明显不同的区间值模糊集熵相等的缺点.数值实例和仿真实验表明了所提出模糊熵的合理性和实用性. Centroid fuzzy entropy and weighted fuzzy entropy of type-2 fuzzy sets are studied, and their expressions are constructed. For the special case of type-2 fuzzy sets, a new definition of fuzzy entropy of interval-valued fuzzy sets is proposed, which remedies the shortcomings of existing ones in the cases that when an interval-valued fuzzy set degenerates the ordinary fuzzy set, its entropy is zero, and that two distinct interval-valued fuzzy sets have the same fuzzy entropy. Numerical examples show the rationality and practicality of the proposed fuzzy entropy.
出处 《控制与决策》 EI CSCD 北大核心 2012年第3期408-412,共5页 Control and Decision
基金 国家自然科学基金项目(10771043)
关键词 二型模糊集 区间值模糊集 模糊熵度量 type-2 fuzzy sets interval-valued fuzzy sets fuzzy entropy
  • 相关文献

参考文献12

  • 1Zadeh L A. Fuzzy sets[J]. Information and Control, 1965,8(3): 338-353.
  • 2Zadeh L A. The concept of a linguistic variable andits application to approximate reasoning[J]. InformationScience, 1975, 8(3): 199-249.
  • 3Mendel J M, John R I B. Type-2 fuzzy sets made simple[J].IEEE Trans on Fuzzy Systems, 2002, 10(2): 117-127.
  • 4Niewiadomski A. Imprecision measures for type-2fuzzy sets: Applications to linguistic summarization ofdatabases[J]. Lecture Notes in Artificial Intelligence, 2008,5097: 285-294.
  • 5Burillo P, Bustince H. Entropy on intuitionistic fuzzysets and on interval-valued fuzzy sets[J]. Fuzzy Sets andSystems, 1996, 78(3): 305-316.
  • 6俞峰,杨成梧.直觉区间值模糊集的熵、距离测度和相似测度[J].计算机科学,2008,35(6):199-201. 被引量:5
  • 7De Luca A, Termini S. A definition of a nonprobabilisticentropy in setting of fuzzy sets theory[J]. Information andControl, 1972, 20(4): 301-312.
  • 8PedyrezW. Why triangular membership function[J]. FuzzySets and Systems, 1994, 64(1): 21-30.
  • 9Pedyrez W. Interfaces of fuzzy models: A study in fuzzyinformation processing[J]. Information Science, 1996,90(1-4): 231-280.
  • 10Chen Y H, Wang W J. Fuzzy entropy managementvia scaling, elevation and saturation[J]. Fuzzy Sets andSystems, 1998, 95(2): 173-178.

二级参考文献4

  • 1Atanassov K, Gargov G. Interval-valued intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1989,31 : 343-349
  • 2Atanassov K. Operations over interval-valued intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1994,64 : 159-174
  • 3Mondal T, Samanta S. Topology of interval-valued intuitionistic fuzzy sets[J].Fuzzy Sets and Systems, 2001,119 : 483-194
  • 4Liu X. Entropy distance measures and similarity measure of fuzzy sets and their relations [J].Fuzzy sets and systems, 1992,72:331-348

共引文献4

同被引文献157

引证文献17

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部