期刊文献+

一类非线性随机不确定系统有限时间H_∞滤波 被引量:9

Finite-time H_∞ filtering for a class of nonlinear stochastic uncertain systems
原文传递
导出
摘要 研究一类具有时变、有界干扰的非线性随机不确定系统有限时间H∞滤波问题.首先,给出了非线性随机不确定系统有限时间H∞滤波问题的定义;其次,通过构造Lyapunov-Krasoviskii函数,并结合线性矩阵不等式(LMI)方法,给出了非线性随机不确定系统有限时间∞滤波器存在的充分条件;再次,将该问题简化为具有LMI约束的优化问题,并给出了相应的求解算法;最后,通过数值算例表明了所提出设计方法的有效性. The finite-time H∞ filtering problem for a class of nonlinear stochastic uncertain systems with norm bounded exogenous disturbance is considered. Firstly, the definition of finite-time H∞ filtering of a class of nonlinear stochastic uncertain systems is given. Then, by constructing Lyapunov-Krasoviskii function and using linear matrix inequality approach, a sufficient condition for finite-time H∞ filter of a class of nonlinear stochastic uncertain systems is presented. Furthermore, this problem is simplified to the optimization under the constraint of linear matrix inequality, the corresponding solving algorithm is given. Finally, an example is presented to demonstrate the effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2012年第3期419-424,430,共7页 Control and Decision
基金 国家自然科学基金项目(60674019 61074088)
关键词 非线性随机不确定系统 有限时间H∞滤波 线性矩阵不等式 nonlinear stochastic uncertain systems finite-time H∞ filtering linear matrix inequality(LMI)
  • 相关文献

参考文献12

  • 1Gershon E, Limebeer D J N, Shaked U. Robust ..filtering of stationary continuous-time linear systems withstochastic uncertainties[J]. IEEE Trans on AutomaticControl, 2001, 46(11): 1788-1793.
  • 2Xu Sheng-yuan, Chen Tong-wen. Reduced-order .filtering for stochastic systems[J]. IEEE Trans on SignalProcessing, 2002, 50 (12): 2998-3007.
  • 3Zhang Wei-hai, Chen Bor-sen, Tseng Chung-Shi. Robust. filtering for nonlinear stochastic systems[J]. IEEETrans on Signal Processing, 2005, 53(2): 589-598.
  • 4Dorato P. Short time stability in linear time-varyingsystems[C]. Proc of IRE Int Convention Record. New York,1961, 4: 83-87.
  • 5Weiss Infante L E. Finite time stability under perturbingforces and on product spaces[J]. IEEE Trans on AutomaticControl, 1967, 12(1): 54-59.
  • 6Amato F, Ariola M, Dorato P. Finite time control oflinear system subject to parametric uncertainties anddisturbances[J]. Automatica, 2001, 37(9): 1459-1463.
  • 7Amato F, Ariola M, Dorato P. Finite time stabilizationvia dynamic output feedback[J]. Automatica, 2006, 42(2):337-342.
  • 8Zhang Wei-hai, An Xiu-ying. Finite-time control of linearstochastic systems[J]. Int J of Innovative Computing,Information and Control, 2008, 4(3): 687-694.
  • 9何舒平,刘飞.Markov跳变系统的有限时间状态反馈镇定[J].控制与决策,2009,24(1):91-95. 被引量:8
  • 10Yan Zhiguo, Zhang Guoshan, Wang Jiankui. Finite-time stability and stabilization of linear stochastic systems[C].Proc of the 29th Chinese Control Conf. Beijing: IEEE Press, 2010: 1115-1120.

二级参考文献16

  • 1李世华,丁世宏,田玉平.一类二阶非线性系统的有限时间状态反馈镇定方法[J].自动化学报,2007,33(1):101-104. 被引量:52
  • 2Dorato P. Short time stability in linear time-varying systems[C]. Proc of the IRE Int Convention Record. Part 4. New York, 1961: 83-87.
  • 3Amato F, Ariola M, Abdallah C T, et al. Dynamic output feedback finite-time control of LIT systems subject to parameteric uncertainties and disturbances [C]. Proc of the European Control Conf. Berlin: Springer, 1999: 1176-1180.
  • 4Amato F, Ariola M, Dorato P. Finite-time control of linear systems subject to parametric uncertainties and disturbanees[J]. Automatica, 2001, 37(9): 1459-1463.
  • 5Amoto F, Ariola M, Cosentino C. Finite-time stabilization via dynamic output feedback [J]. Automatica, 2006, 42(2): 337-342.
  • 6Weiss L, Infante E F. Finite time stability under pertuabing forces and on product spaces [J]. IEEE Trans on Automatic Control, 1967, 2(2): 54-59.
  • 7Amato F, Ariola M. Finite-time control of discrete-time linear systems[J]. IEEE Trans on Automatic Control,2005, 50(5): 724-729.
  • 8Krasovskii N M, Lidskii E A. Analytical design of controllers in systems with random attributes [J]. Automation and Remote Control, 1961, 22 (1-3): 1021- 1025, 1141-1146, 1289-1294.
  • 9Mao X. Stability of stochastic differential equations with Markovian switching[J]. Stochastic Processes and Their Applications, 1999, 79(2): 45-67.
  • 10Bolzern P, Colaneri P, Nicolao G D. On almost sure stability of continuous-time Markov jump linear systems[J]. Automatica, 2006, 42 (6): 983-988.

共引文献7

同被引文献76

  • 1FENGJun-E,WUZhen,SUNJia-Bing.Finite-time Control of Linear Singular Systems with Parametric Uncertainties and Disturbances[J].自动化学报,2005,31(4):634-637. 被引量:28
  • 2WU Zheng-Guang,ZHOU Wu-Neng.Delay-dependent Robust Singular Systems Stabilization for Uncertain with State Delay[J].自动化学报,2007,33(7):714-718. 被引量:27
  • 3Xu S, Lam J,Zou Y. H∞ filtering for singular systems[J]. IEEE Transactions on Automatic Control, 2003,48 (12) : 2217-2222.
  • 4Park J H.Design of robust H∞ filtering for a class of neutral system: LMI optimization approach[J].Mathematics and Computers in Simulation,2005,70(2) :99-109.
  • 5Kim H J,Ahn J S,Ahn S.Guaranteed cost and H∞ filter- ing for discrete-time polytypic uncertain systems with time delay[J].Journal of the Franklin Institute, 2005,342 (4):365-378.
  • 6Ma S P,Boukas E K.Robust H∞ filtering for uncertain dis- crete Markov jump singular systems with mode-dependent time delay[J].IET Control Theory and Applications, 2009, 3(3):351-361.
  • 7Wen S, Zeng Z, Huang T. H∞ filtering for neutral systems with mixed delays and multiplicative noises[J].IEEE Transactions on Circuits and Systems, 2012, 59(11): 820-824.
  • 8You J, Gao H, Basin M V.Further improved results on filtering for discrete time-delay systems[J].Signal Pro- cessing, 2013,93 (7) : 1845-1852.
  • 9Lian J, Mu C, Shi EAsynchronous H∞ filtering for switched stochastic systems with time-varying delay[J].Information Sciences, 2013,224( 1 ) :200-212.
  • 10Amato F, Ariola M, Cosention C.Finite-time stability of lin- ear time-varying systems: analysis and controller design[J]. IEEE Transactions on Automatic Control, 2010, 55(4): 1003-1008.

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部