摘要
针对一类非线性系统提出一种新的学习控制算法,该算法在可变学习增益的迭代学习控制律基础上,增加了系统初态的迭代学习律.利用算子理论证明了系统在存在初态偏移时经过迭代学习后,其输出能够完全跟踪期望轨迹,同时得到了该算法谱半径形式的收敛条件.将该算法与传统迭代学习控制相比较可以看出,前者的收敛速度得到了较大提高,而且解决了可变学习增益迭代学习控制的初态偏移问题.仿真结果验证了该算法的有效性.
For a class of nonlinear systems, a new learning control algorithm is proposed, which increases iterative learning rule of initial state of system on the base of iterative learning control with variable learning gain. By using the operator theory, it is proved that the output of system can track the expected trajectory completely after the iterative learning of system with initial state disturbance, and the convergent condition for the spectral radius form of the algorithm is given. Compared with the tranditional iterative learning control, the proposed algorithm not only significantly improves the convergent speed, but also solves the initial state disturbance problem of the iterative learning control with variable learning gain. Simulation results show the effectiveness of the proposed algorithm.
出处
《控制与决策》
EI
CSCD
北大核心
2012年第3期473-476,480,共5页
Control and Decision
基金
国家杰出青年科学基金项目(60672015)
黑龙江省教育厅支持项目(11541390)
关键词
非线性系统
迭代学习控制
初态学习
可变学习增益
算子理论
nonlinear system
iterafive learning control
state study
variable learning gain
operator theory