期刊文献+

钢铁表面超疏水膜的制备与表征 被引量:6

Fabrication and characterization of superhydrophobic films on steel substrate
下载PDF
导出
摘要 采用水热法结合氟硅烷修饰直接在钢铁表面制备超疏水膜。疏水膜的疏水性与钢铁基底的微纳米结构有重要关系。结果表明,以乙二胺为溶剂,经140℃水热反应4h和160℃水热反应5h,可以在钢铁表面制得具有次级网状结构的正八面体、花状等微纳米精细结构,再经氟硅烷修饰后表现出良好的超疏水性,与水滴的接触角分别达到156.49和165.31°。XRD的分析结果表明,该微纳米结构的主要成分是Fe3O4,它的形成一方面提供了制备超疏水表面所必须的微纳米精细结构,另一方面又为与氟硅烷发生反应生成牢固的薄膜创造了条件。电化学分析结果表明,超疏水膜层的存在显著降低了钢铁基底的腐蚀倾向。 Superhydrophobic films were prepared on steel substrate using hydrothermal method combined with modification of fluorinated silane. The hydrophbility of hydrophobic films is related to the micro-nano fine structures of the steel substrate. The results showed that octahedron-like, flower-like micro-nano hierarchical structures had grown on steel surface, which were fabricated by hydrothermal reactions in an ethylenediamine solution at 140℃ for 4h as well as at 160℃ for 5h. After modified by fluorinated silane, the treated surface exhibited superhydrobicity with water contact angles of 156.49 and 165.31°, respectively. The result of X-ray diffraction pattern indicated that the main component of the micro-nano structure was Fe304. The formation of Fe3 04 provides micro-nano fine structures that is necessary to prepare hydrophobic surface, and provides conditions which tight films were formed by reacted with fluorinated silane. Electrochemical tests showed that the anti-corrosion property of steel was improved effectively by the superhydrophobic films.
出处 《功能材料》 EI CAS CSCD 北大核心 2012年第5期645-649,共5页 Journal of Functional Materials
基金 山东省科技攻关资助项目(2006GG2203022)
关键词 水热反应 钢铁 微纳米结构 超疏水 氟硅烷 hydrothermal reaction steel micro-nano structures superhydrophobicity fluorinated silane
  • 相关文献

参考文献24

  • 1Barkhudarov P M, Shah P B, Watkins E B, et al. [J]. Corros Sci, 2008, 50:897-902.
  • 2Zhang F, Chen S G, Dong L H, et al. [J]. Appl Surf Sci, 2011,257:2587-2591.
  • 3HsiehCT, ChenJ M, KuoRR, et al. [J]. Appl Surf Sci, 2005, 240:318-326.
  • 4Blossey R. [J]. Nat Mater, 2003, 2: 301-306.
  • 5Feng L, Li S, Li Y, et al. [J]. Adv Mater, 2002, 14: 1857.
  • 6Marmur A. [J]. Langmuir, 2004, 20: 3517-3519.
  • 7Xiong J J, Das S N, Shin B, et al. [J]. J Colloid Interfacc Sci, 2010, 350: 344-347.
  • 8Zhou X F, Guo X F, Ding W P, et al. [J]. Appl Surf Sci, 2008, 255: 3371-3374.
  • 9Islam M S, Akter N, Karim M R. [J]. Colloid Surf A, 2010, 362: 117-120.
  • 10Kong L H, Chen X H, Yang G B, et al. [J]. Appl Surf Sci, 2008, 254: 7255-7258.

二级参考文献146

共引文献86

同被引文献33

  • 1钱柏太,沈自求.控制表面氧化法制备超疏水CuO纳米花膜[J].无机材料学报,2006,21(3):747-752. 被引量:32
  • 2Tao T, Zhang L, Ma J, Li C Z. Ind Eng Chem Res, 2012, 51(15) : 5456-5460.
  • 3Wang C F, Chen W Y, Cheng H Z, Fu S L. Phys Chem C, 2010, 114(37) : 15607-15611.
  • 4Alexander S, Martin Z, Stark W J. ACS Catal, 2012, 2(6) : 1267-1284.
  • 5Wu D F, Wang J H, Zhang M, Zhou W D. Ind Eng Chem Res, 2012, 51(19) : 6705-6713.
  • 6Deshpande M S, Mazumdar S. Biomacromolecules, 2012, 13(5): 1410-1419.
  • 7Wei Y, Chan-Park M B. ACS Appl Mater Interfaces, 2012, 4(4) : 2065-2073.
  • 8Peng M, Guo H L, Liao Z J, Qi J, Zhou Z, Fang Z P, Shen L. J Colloid Interface Sei, 2012, 367(1): 225-233.
  • 9Lin Z Y, Liu Y, Wong C P. Langmuir. 2010, 26(20), 16110-16114.
  • 10Zou J H, Chen H, Chunder A, Yu Y X, Huo Q. Adv. Mater. 2008, 20(17), 3337-3341.

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部