期刊文献+

自适应样本块大小的图像修复方法 被引量:32

Image completion method with adaptive patch size
原文传递
导出
摘要 传统基于样本块的图像修复算法中样本块大小是固定不变的,在修复过程中无法根据图像的具体情况进行调节,这在很大程度上影响了图像的整体修复效果。为了解决这一问题,提出一种自适应确定样本块大小的方法。该算法通过分析图像的梯度域变化,获得各像素点处的结构信息,进而自适应确定待修复样本块的大小。仿真实验结果表明,该算法能够有效克服传统方法中经常出现的诸如结构误传播、图像整体结构丢失等缺点,对具有明显结构变化的图像取得了比较理想的修复效果。 In the traditional examplar-based algorithm, the image completion effect is greatly degraded due to the fixed patch-size, which cannot change together with an image automatically in the process of completing. So in this paper we propose an adaptive patch-size determining method to solve this problem. By analyzing the image changes in the gradient domain, this method acquires the structure information of each pixel, and then automatically adjusts the patch-size. The simulation results show that this method can overcome many shortcomings of traditional methods, such as structural error propagation and whole structure loss, and realizes perfect completion effect for images with obvious changed structure.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第3期337-341,共5页 Journal of Image and Graphics
基金 国家自然科学基金项目(61002030)
关键词 图像修复 纹理合成 自适应样本块大小 梯度域 image completion texture synthesis adaptive patch size gradient field
  • 相关文献

参考文献16

  • 1Drori I, Cohen-Or D, Yeshurun H. Fragment-based image completion[ C ]//Proceedings of ACM SIGGRAPH. New York, USA: ACM, 2003 : 303-312.
  • 2Criminisi A, Perez P, Toyama K. Object removal by exemplar- based inpainting [ C ]//Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison: Wisconsin, 2003:721-728.
  • 3屈磊,韦穗,梁栋,王年.快速自适应模板图像修复算法[J].中国图象图形学报,2008,13(1):24-28. 被引量:13
  • 4Andrei R, Marcel J T, Jan B. Edge-based image restoration [ J]. IEEE Transactions on Image Processing, 2005, 14 (10) : 1454-1468.
  • 5Sun J, Yuan L, Jia J Y, et al. Image completion with structure propagation [ C ]//Proceedings of ACM SIGGRAPH. New York, USA: ACM, 2035, 24 (3) : 861-868.
  • 6Shen M F, Li B. Structure and texture image iupainting based on region segmentation [ C ]// Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Hawaii, USA : Honolulu, 2007: 701 -704.
  • 7Wang M Q, Han G Q, Tu Y Q. Edge-based image completing guided by region segmentation [ C ]// Proceedings of ISECS International Colloquium Computing, Communication,Control, and Management. Guangzhou, China: IEEE, 2008 : 152-156.
  • 8Wong A, Orchard J. A nonlocal-means approach to exemplar- based inpainting [ C ]// Proceedings of 2008 the 15th IEEE International Conference on Image Processing. San Diego, CA, USA: IEEE, 2008: 2600-2603.
  • 9Xu Z B, Sun J. Image inpainting by patch propagation using patch sparisty [ J]. IEEE Transactions on Image Processing, 2010, 19(5): 1153-1165.
  • 10胡正平,刘文,许成谦,李杰.局部自适应学习基稀疏约束结合信息优先权选择扩散的迭代图像修复算法研究[J].仪器仪表学报,2010,31(3):600-605. 被引量:10

二级参考文献35

  • 1游培寒,毕笃彦,毛柏鑫.图像修复RBF模型的Kalman改进算法[J].小型微型计算机系统,2005,26(4):676-679. 被引量:2
  • 2张晓玲,沈兰荪,Lam Kin-Man.一种基于分形码和模型约束的图像放大算法[J].电子学报,2006,34(3):433-436. 被引量:11
  • 3BERTALMIO M, SAPIRO G, CASELLES V. Image inpainting[C]. Proceedings of SIGGRAPH'2000, New York: ACM Press, 2000: 411-424.
  • 4CHAN T, SHEN J H. Non-texture inpainting by curvature-driven diffusions (CDD)[J]. Journal of Visual Communication and Image Representation, 2001, 12(4): 436-449.
  • 5EFROS A A, LEUNG T K. Texture synthesis by non-parametric sampling[C]. Proceedings of International Conference on Computer Vision. Greece, 1999: 1033-1038.
  • 6BERTALMIO M, VESE L, SAPIRO G, et al. Simultaneous structure and texture image inpainting[J]. IEEE Trans. on Image Processing, 2003, 12(8): 882-889.
  • 7CRIMINISI A, PEREZ P, TOYAMA K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Trans. on Image Processing, 2004, 13 (9): 1200-1212.
  • 8GULERYUZL O G. Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated de-noising-Part Ⅰ: Theory[J]. IEEE Transactions on image processing, 2006, 15(3):539-554.
  • 9GULERYUZL O G. Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated de-noising-Part Ⅱ: Adaptive algorithms[J]. IEEE Trans. on image processing, 2006, 15(3): 555-571.
  • 10DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.

共引文献31

同被引文献231

引证文献32

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部