期刊文献+

某类本原不可幂定号有向图的第一类广义基

The First Type of Generalized Base of a Primitive Non-powerful Signed Digraph
下载PDF
导出
摘要 利用有关本原不可幂定号有向图的相关理论方法,对某类含有三个圈的本原不可幂定号有向图进行了研究.根据图形的性质,综合运用SSSD途径对、Frobenius指数和异圈对的相关理论,进而得出这类本原不可幂定号有向图的第一类广义基,即Local基. In this paper, we study a kind of primitive non-powerful signed digraphs with three simpe cycles by using some theory of the primitive non-powerful signed digraphs. The local base of this special primitive non-powerful signed digraph are obtained by analyzing the characteristics of SSSD walks, Frobenius and distinguished cycle pair.
机构地区 中北大学数学系
出处 《河北北方学院学报(自然科学版)》 2012年第1期1-3,11,共4页 Journal of Hebei North University:Natural Science Edition
基金 国家自然科学基金资助项目(11071227) 山西省自然科学基金资助项目(2008011009)
关键词 SSSD途径对 Local基 定号有向图 本原指数 SSSD walks local base signed digraph primitive exponent
  • 相关文献

参考文献7

  • 1Li Z, Hall F, Eschbach C. On the period on base of a sign pattern matrix [J]. Linear Algebra Appl, 1994, 212/ 213:101-120.
  • 2You LH, Shao JY, Shan HY. Bounds on the bases of irreducible generalized sign pattern matrices [J]. Linear Algebra Appl, 2007, 427:285-300.
  • 3Shao JY. On the exponent of a primitive digraph [J]. Linear Algebra Appl, 1985, 64:21-31.
  • 4Gao YB, Huang YH, Shao YL. Bases of primitive non-powerful singed symmetric digraphs with loops [J]. Ars Combin, 2009, 90: 383-388.
  • 5Ma HP. Bounds on the local bases of primitive, non-powerful, minimally strong signed digraphs [J]. Linear Algebra Appl, 2009, 430:718-731.
  • 6Liu BI., You LH. Bounds on the base of primitive nearly reducible sign pattern matrices [J]. Linear Algebra Appl, 2006, 418:863-881.
  • 7Shen J, Neufeld S. Local exponents of primitive digraphs [J]. Linear Algebra Appl. 1998, 268: 117-129.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部