期刊文献+

基于数据挖掘的快速记录存储器数据处理技术 被引量:2

QAR data processing based on data mining
下载PDF
导出
摘要 针对目前国内缺少专门分析快速记录存储器(QAR)数据的有效手段的情况,研究了一种新的基于数据挖掘的QAR数据的分析方法。首先结合聚类和概率分析对k-means算法进行改进,解决了聚类数目难以确定的难题,形成了良好的聚类效果;然后,在此基础上结合加权最小距离分类器及概率分析的方法,对待分类的QAR数据的类别属性进行判断以确定异常数据;最后给出了仿真实验,验证了该方法的可行性和有效性。 According to the lack of efficient analysis tool for Quick Access Recorder(QAR) data, an improved data mining method is proposed in this paper. First, a modified algorithm of k-means based on probability theory is given. Then the cluster number of QAR data set is determined, so that better cluster results can be obtained. In order to identify the atypical data and the class of typical data, a weighted minimum distance classification as well as probability analysis is used. At last, experiments of cluster and classification are given to indicate the feasibility and effectiveness of the new method.
出处 《信息与电子工程》 2012年第1期118-123,共6页 information and electronic engineering
基金 国家自然科学基金资助项目(60872110)
关键词 飞行数据 聚类 分类 flight data cluster classification
  • 相关文献

参考文献11

  • 1Amidan B G,Ferryman T A. A typical event and typical pattern detection within complex systems[C]// Proceedings of 2005 IEEE Aerospace Conference. Big Sky,MT:[s.n.], 2005:3620-3631.
  • 2于勇.数据挖掘研究及其应用[J].信息与电子工程,2003,1(1):30-30. 被引量:6
  • 3Statler I C,Ferryman T A,Amidan B G,et al. Identification of atypical flight patterns:US, 6,937,924[P]. 2005-08-30.
  • 4Toth D,Aach T. Improved minimum distance classification with Gaussian outlier detection for industrial inspection[C]// Proc. the Eleventh International conference on Image Analysis and Processing. Palermo:[s.n.], 2001:584-588.
  • 5Han Jiawei,Kamber Micheline. Data Mining: Concepts and Techniques[M]. 2nd ed. San Francisco:Elsevier, 2006:400- 589.
  • 6Tan Pangning,Steinbach M,Kumar V. Introduction to data mining[M]. DuPage:Addison Wesley, 2005.
  • 7傅德胜,周辰.基于密度的改进K均值算法及实现[J].计算机应用,2011,31(2):432-434. 被引量:76
  • 8Ester,Martin,Hans Peter Kriegel,et al. A Density Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]// Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining(KDD-96). Ortland, Oregen:[s.n.], 1996.
  • 9Coleman T F,Li Y. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds[J]. SIAM Journal on Optimization, 1996,6:418-445.
  • 10余晓航,李磊民,黄玉清.基于粗糙集和决策树法的认知无线电知识挖掘[J].信息与电子工程,2010,8(5):607-611. 被引量:4

二级参考文献29

  • 1陆林花,王波.一种改进的遗传聚类算法[J].计算机工程与应用,2007,43(21):170-172. 被引量:26
  • 2Mitola J. Cognitive radio:making software radios more oersonal[J]. IEEE Pers. Commun.. 1996.6(4):139-153.
  • 3WANG Jiao,HUANG Yu-qing,JIANG Hong. Improved Algorithm of Spectrum Allocation Based on Graph Coloring Model in Cognitive Radio[C]//Proc. 2009 International Conference on Communication and Mobile Computing(CMC). Los Alamitos:IEEE Computer Society, 2009:53-357.
  • 4ZHANG Xiao-qin,HUANG Yu-qing,JIANG Hong,et al. Design of Cognitive Radio Node Engine Based on Genetic Algorithm[C]// 2009 WASE International Conference on Information Engineering. Taiyuan:[s.n.], 2009:22-25.
  • 5Joseph Mitola III. Cognitive Radio An Integrated Agent Architecture for Software Defined Radio[D]. Ph.D dissertation of Sweden:Royal Institute of Technology(KTH), 2000.
  • 6HUANG Yu-qing,JIANG Hong,HU Hong,et al. Design of Learning Engine Based on Support Vector Machine[C]//Proceedings of 2009 International Conference on Computational Intelligence and Software Engineering(CiSE2009). Wuhan:[s.n.], 2009:54-57.
  • 7Allen Ginsberg,Jeffrey Poston,William Horne. Toward a Cognitive Radio Architecture: Integrating Knowledge Representation with Software Defined Radio Technologies[C]//IEEE In Military Communications Conference. Washington:[s.n.], 2006:1-7.
  • 8Pawlak Z. Rough sets[J]. International Journal of Computer and Information Science, 1982,11(5):341-356.
  • 9Lech Polkowski,Shusaku Tsumoto,Tsau Y Lin. Rough set methods and applications:new developments in knowledge discovery in information systems[M]. New York:Physica-Verlag, 2000.
  • 10Pawlak Z. Vagueness and uncertainty:a rough set perspective[J]. Computational intelligence, 1995,10(2):227-232.

共引文献125

同被引文献51

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部