期刊文献+

惯性权自适应调整的量子粒子群优化算法 被引量:75

Quantum-Behaved Particle Swarm Algorithm with Self-adapting Adjustment of Inertia Weight
下载PDF
导出
摘要 针对量子粒子群的惯性权值β线性递减不能适应复杂的非线性优化搜索过程的问题,提出了一种惯性权自适应调整的量子粒子群优化(DCWQPSO)算法.在该算法中,引入了量子粒子群进化速度因子sd和聚集度因子jd,并将惯性因子β表示为sd,jd2个参数的函数.在每次迭代时,算法可根据当前量子粒子群进化速度因子和聚集度因子动态地调整惯性权值,从而使算法具有动态自适应性.对典型的标准函数的测试结果表明,与量子粒子群算法相比,改进后的量子粒子群优化算法的收敛速度明显提高. A new quantum-behaved particle swarm algorithm with self-adapting adjustment of inertia weight was presented to solve the problem that the linearly decreasing weight of the quantum-behaved particle swarm algorithm cannot adapt to the complex and nonlinear optimization process.The evolution speed factor and aggregation degree factor of the swarm are introduced in this new algorithm and the weight is formulated as a function of these two factors according to their impact on the search performance of the swarm.In each iteration process,the weight is changed dynamically based on the current evolution speed factor and aggregation degree factor,which provides the algorithm with effective dynamic adaptability.The algorithms of quantum-behaved particle swarm were tested with benchmark functions.The experiments show that the convergence speed of adaptive quantum-behaved particle swarm algorithm is significantly superior to quantum-behaved particle swarm algorithm.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2012年第2期228-232,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(10774131)
关键词 量子粒子群 自适应 惯性权 quantum-behaved particle swarm adaptability inertia weight
  • 相关文献

参考文献9

  • 1Kennedy J,Eberhart R.Particle swarm optimization[C] //Proc of IEEE International Conference on NeuralNetworks.Perth:IEEE Press,1995:1942-1948.
  • 2Kuok K K,Harun S,Shamsuddin S M.Particle swarmoptimization feedforward neural network for modelingrunoff[J].International Journal of Environmental Sci-ence and Technology,2010,7(1):67-78.
  • 3YANG Li-ying,ZHANG Jun-ying,WANG Wen-jun.Selecting and combining classifiers simultaneouslywith particle swarm optimization[J].InformationTechnology,2009,8(2):241-245.
  • 4Suganthan P N.Particle swarm optimiser with neigh-bourhood operator[C] //Proceedings of the Congresson Evolutionary Computation.Washington,DC:IEEE Press,1999:1958-1962.
  • 5Feng J S B,Xu W B.Particle swarm optimization withparticles having quantum behavior[C] //Proceedingsof 2004 Congress on Evolutionary Computation.Port-land,Oregon:IEEE Press,2004:325-331.
  • 6Sun J,Xu W B.A global search strategy of quantum-behaved particle swarm optimization[C] //Proceedingsof the IEEE Congress on Cybernetics and IntelligentSystem.Singapore:IEEE Press,2004:111-116.
  • 7张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 8靳雁霞,韩燮,周汉昌.具有量子行为的粒子群优化算法的改进[J].计算机工程与应用,2009,45(35):41-43. 被引量:8
  • 9余健,郭平.基于MATLAB的量子粒子群优化算法及其应用[J].计算机与数字工程,2007,35(12):38-39. 被引量:10

二级参考文献17

  • 1孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策,2006,21(3):263-266. 被引量:76
  • 2Bnabean E,Dorigo M,Theraubz G.Inspiration for optimization from social insect behavior[J].Nature,2000,406(6):439-442.
  • 3Xi Maolong,Sun Jun,Xu Wenbo.An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position[J].Applied Mathematics and Computation,2008,205:751-759.
  • 4Leandro dos Santos Coelho.A quantum particle swarm optimizer with chaotic mutation operator[J].Chaos,Soliton and Fractals,2008,37: 1409-1418.
  • 5曾谨言.量子力学导论[M].2版.北京:北京大学出版社,2006:135-162.
  • 6康燕,孙俊,须文波.具有量子行为的粒子群优化算法的参数选择[J].计算机工程与应用,2007,43(23):40-42. 被引量:19
  • 7Eberhart R C,Kennedy J. A new optimizer using particle swarm theory [A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science [C]. Piscataway, USA: IEEE Service Center, 1995. 39-43.
  • 8Eberhart R C,Shi Y H. Particle swarm optimization: developments, applications and resources [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, USA: IEEE Service Center, 2001. 81-86.
  • 9Shi Y H,Eberhart R C. Fuzzy adaptive particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, USA: IEEE Service Center, 2001. 101-106.
  • 10Shi Y H, Eberhart R C. A modified particle swarm optimizer [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway,USA: IEEE Service Center, 1998. 69-73.

共引文献149

同被引文献677

引证文献75

二级引证文献465

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部