摘要
针对量子粒子群的惯性权值β线性递减不能适应复杂的非线性优化搜索过程的问题,提出了一种惯性权自适应调整的量子粒子群优化(DCWQPSO)算法.在该算法中,引入了量子粒子群进化速度因子sd和聚集度因子jd,并将惯性因子β表示为sd,jd2个参数的函数.在每次迭代时,算法可根据当前量子粒子群进化速度因子和聚集度因子动态地调整惯性权值,从而使算法具有动态自适应性.对典型的标准函数的测试结果表明,与量子粒子群算法相比,改进后的量子粒子群优化算法的收敛速度明显提高.
A new quantum-behaved particle swarm algorithm with self-adapting adjustment of inertia weight was presented to solve the problem that the linearly decreasing weight of the quantum-behaved particle swarm algorithm cannot adapt to the complex and nonlinear optimization process.The evolution speed factor and aggregation degree factor of the swarm are introduced in this new algorithm and the weight is formulated as a function of these two factors according to their impact on the search performance of the swarm.In each iteration process,the weight is changed dynamically based on the current evolution speed factor and aggregation degree factor,which provides the algorithm with effective dynamic adaptability.The algorithms of quantum-behaved particle swarm were tested with benchmark functions.The experiments show that the convergence speed of adaptive quantum-behaved particle swarm algorithm is significantly superior to quantum-behaved particle swarm algorithm.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2012年第2期228-232,共5页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金项目(10774131)
关键词
量子粒子群
自适应
惯性权
quantum-behaved particle swarm
adaptability
inertia weight