期刊文献+

多孔介质中气泡尺寸对流动阻力的影响 被引量:10

Influence of bubble size on fluid resistance in porous media
下载PDF
导出
摘要 多孔介质中的泡沫能够封堵某些孔道,降低气体流动性。由于直接观察多孔介质中的泡沫流动比较困难,所以关于泡沫流动性与气泡尺寸之间的关系研究较少。利用Navier-Stokes方程与守恒的水平集方法耦合模拟孔隙介质中气泡尺寸对流动阻力的影响,结果证实,气泡尺寸是影响流体阻力的重要因素。当气泡半径小于孔喉半径时,气泡不受孔道约束,气泡流动过程中流动阻力较稳定,此时含气泡流体流动阻力与纯液态流体流动阻力相等,所以小于孔喉尺寸的气泡对孔道无封堵作用。当气泡半径大于孔喉半径时,孔道影响气泡变形,其流动阻力存在波动性,最大流动阻力随气泡体积变大呈线性增加。当气泡体积增加到使最大流动阻力达极大值时,继续增大气泡体积,最大流动阻力随气泡体积增大而线性降低。最大流动阻力随气泡体积增大而线性增大与减小变化具有周期性,周期为单位孔体体积。 Foam in porous media can plug some pore channels and reduce gas mobility.Direct observation of foam flow patterns in porous media is difficult and therefore research on relationships between gas mobility and bubble size is scarce.The influence of bubble size on fluid resistance in porous media is simulated using the Navier-Stokes equation combined with the conservative level set method.The computational results reveal that the effect of bubble size on flow resistance is pronounced.The pore wall cannot constrain bubble deformation when size of the bubble is smaller than that of the pore throat.In that case,the flow resistance is steady in the flow and is the same as resistance of the single-phase liquid flow.Therefore,small bubbles cannot plug pore channels.The pore channel constrains bubble deformation when size of the bubble is larger than that of the pore throat;and the flow resistance is fluctuant in the flow.The maximum resistance increases linearly with the increase of bubble volume.When the flow resistance reaches the maximum,it decreases linearly with the increase of bubble volume.Alternation of the increase and decrease of the maximum resistance is periodic;and the period is unit pore-body volume.
出处 《岩土力学》 EI CAS CSCD 北大核心 2012年第3期913-918,共6页 Rock and Soil Mechanics
基金 国家自然科学基金资助(No.40902073 50904061)
关键词 水平集法 泡沫流动 气液界面 数值模拟 level set method foam flow gas-liquid interface numerical simulation
  • 相关文献

参考文献20

  • 1KOVSCEK A R,PATZEK T W,RADKE C J.Amechanistic population balance model for transient andsteady-state foam flow in Boise sandstone[J].ChemicalEngineering Science,1995,50(23):3783-3799.
  • 2FALLES A H,MUSTERS J J,RATULOWSKL J.Theapparent viscosity of foams in homogeneous beadpacks[J].SPE Reservoir Engineering,1989,4(2):155-164.
  • 3KIM J S,DONG Y,ROSSEN W R.Steady-state flowbehavior of CO2foam[J].SPE Journal,2005,10(4):405-415.
  • 4ROSSEN W R,ZEILINGER S C,SHI J X,et al.Simplified mechanistic simulation of foam processes inporous media[J].SPE Journal,1999,4(3):279-287.
  • 5HIRASAKI G J,LAWSON J B.Mechanisms of foamflow in porous media:Apparent viscosity in smoothcapillaries[J].SPE Journal,1985,25(2):176-190.
  • 6KOVSCEK A R,BERTIN H J.Foam mobility inheterogeneous porous media[J].Transport in PorousMedia,2003,52(1):37-49.
  • 7APAYDIN O G,KOVSCEK A R.Surfactantconcentration and end effects on foam flow in porousmedia[J].Transport in Porous Media,2001,43(3):511-536.
  • 8ZITHA P J.Foam drainage in porous media[J].Transport in Porous Media,2003,52(1):1-16.
  • 9NGUYEN Q P.Dynamics of foam in porous media[D].Netherlands:Technische Universiteit Delft,2004.
  • 10ENRIGHT D,FEDKIW R,FERZIGER J,et al.A hybridparticle level set method for improved interfacecapturing[J].Journal of Computational Physics,2002,183(1):83-116.

同被引文献112

引证文献10

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部