摘要
在没有假定多值映射是连续映射的条件下,得到了(g,η)-增生算子、广义豫解算子和(g,η)-增生算子产生的广义Yosida近似的一些性质,并应用这些性质证明了一类变分包含问题的解的存在性.
Assuming that the multi-valued mapping is continuous, the properties of (g, η)-accretive operator and generalized resolvent operator and generalized Yosida approximation generated by the (g, η)-accretive operator are established. By applying these properties, the existence of solution of a class of variational inclusion problems is proved.
出处
《南昌工程学院学报》
CAS
2012年第1期55-60,共6页
Journal of Nanchang Institute of Technology
基金
Supported by Youth Foundation of Nanchang Institute of Technology(No.2010KJ025)~~
关键词
(g
η)-增生算子
广义豫解算子
广义Yosida近似
半闭
变分包含
( g, η) -accretive operators
generalized resolvent operators
generalized Yosida approximation
demiclosed
varia- tional inclusions