期刊文献+

(g,η)-增生算子及变分包含问题(英文)

(g,η)-accretive operators and variational inclusions problem
下载PDF
导出
摘要 在没有假定多值映射是连续映射的条件下,得到了(g,η)-增生算子、广义豫解算子和(g,η)-增生算子产生的广义Yosida近似的一些性质,并应用这些性质证明了一类变分包含问题的解的存在性. Assuming that the multi-valued mapping is continuous, the properties of (g, η)-accretive operator and generalized resolvent operator and generalized Yosida approximation generated by the (g, η)-accretive operator are established. By applying these properties, the existence of solution of a class of variational inclusion problems is proved.
作者 金珍 李小玲
出处 《南昌工程学院学报》 CAS 2012年第1期55-60,共6页 Journal of Nanchang Institute of Technology
基金 Supported by Youth Foundation of Nanchang Institute of Technology(No.2010KJ025)~~
关键词 (g η)-增生算子 广义豫解算子 广义Yosida近似 半闭 变分包含 ( g, η) -accretive operators generalized resolvent operators generalized Yosida approximation demiclosed varia- tional inclusions
  • 相关文献

参考文献10

  • 1Fang Y P,Huang N J.H-accretive operators and resolvent operators technique for solving variational inclusions in Banach spaces[J].Ap-pl.Math.Lett.2004,17:647-653.
  • 2Kazmi K R,Khan F A.Iterative approximation of a unique solution of a system of variational inclusions in real-uniformly smooth Banach spaces[J].Nonlinear Anal.2007,67:917-929.
  • 3Ahmad R,Siaddiqi A H.Mixed variational-like inclusions and Jη-proximal operator equations in Banach spaces[J].J.Math.Anal.Appl.2007,327:515-524.
  • 4Lan H Y,Cho Y J,Verma R U.Nonlinear relaxed cocoercive variational inclusion involving(A,η)-accretive mappings in Banach spaces[J].Comput.Math.Appl.2006,52:1529-1538.
  • 5Peng J W.On a new system of generalized mixed quasi-variational-like inclusion with(H,η)-accretive operator in real q-uniformly smooth Banach spaces[J].Nonlinear Anal.2008,68:981-993.
  • 6Peng J W,Zhu D L.Three-step iterative algorithm for a system of set-valued variational inclusions with(H,η)-monotone operators[J].Nonlinear Anal.2008,68:139-153.
  • 7Chang S S.Set-valued variational inclusions in Banach spaces[J].J.Math.Anal.Appl.2000,248:438-454.
  • 8Noor M A.Generalized set-valued variational inclusions and implict-resolvent equations[J].J.Math.Anal.Appl.1998,228:200-220.
  • 9Noor M A.Multivalued quasi variational inclusions and implicit resolvent equations[J].Nonlinear Anal.2002,48:159-174.
  • 10Weng X.Fixed point iteration for local strictly pseudocontractive mapping[J].Proc.Amer.Math.Soc.1991,113:727-731.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部