期刊文献+

用扩散蒙特卡罗方法研究BH2、B(0H)2、BCl2和BCI的键离解能

Diffusion Monte Carlo Study of Bond Dissociation Energies for BH2, B(OH)2, BCl2, and BCI
下载PDF
导出
摘要 采用扩散蒙特卡罗(DMC)方法计算了BH2、B(OH)2、BCl2和BCl的HB—H和HOB—OH的键离解能,同时也研究了轨道选择和Backflaw变换对DMC计算结果的影响.在Slater-Jastrow DMC(SJ—DMC)计算方法中,当采用B3PW91轨道时得到的HB—H和HOB-OH键离解能分别是359.1±0.12和98.2±0.12kJ/mol;用B3LYPSJ—DMC计算键离解能得到r与用B3PW91SJ—DMC方法类似的结果.通过BF—DMCf即在DMC中引入backflow修正)计算得到的HB—H键离解能为369.6±0.12kJ/mol,也得到了更加接近实验值的HOB-OH键离觯能为446.0±1.84kJ/mol.由DMC的计算结果可以断定HB—H的键离解能的实验值为375.8kJ/mol.另外还给出了BCl2和BCl的键离解能的计算结果. On basis of bond dissociation energies (BDEs) for BH2, B(OH)2, BCl2, and BCl, the diffusion Monte Carlo (DMC) method is applied to explore the BDEs of HB-H, HOB-OH, ClB-Cl, and B-Cl. The effect of the choice of orbitals, as well as the backflow transformation, is studied. The Slater-Jastrow DMC algorithm gives BDEs of 359.1±0.12 kJ/mol for HB-H, 410.5±0.50 kJ/mol for HOB-OH, 357.8±1.46 kJ/mol for ClB-Cl, and 504.5±0.96 kJ/mol for B-Cl using B3PW91 orbitals and similar BDEs when B3LYP orbitals are used. DMC with backflow corrections (BF-DMC) gives a HB-H BDE of 369.9±0.12 kJ/mol which is close to one of the available experimental value (375.8 kJ/mol). In the case of HOB-OH BDE, the BF-DMC calculation is 446.04-1.84 k J/mol that is closer to the experimental BDE. The BF-DMC BDE for ClB-Cl is 343.2±2.34 kJ/mol and the BF-DMC B-Cl BDE is 523.3±0.33 kJ/mol, which are close to the experimental BDEs, 341.9 and 530.0 kJ/mol, respectively.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第1期65-69,I0003,I0004,共7页 化学物理学报(英文)
关键词 键离解能 扩散蒙特卡罗方法 轨道选择 Backflow变换 Bond dissociation energy, Diffusion Monte Carlo method, Choice of orbitals Backflow transformation
分类号 O [理学]
  • 相关文献

参考文献38

  • 1D. A. Dixon and M. Gutowski, J. Phys. Chem. A 109, 5129 (2005).
  • 2A. Ziittel, Naturwissenschaften 91, 157 (2004).
  • 3L. Barton, F. A. Grimm, and R. F. Porte, Inorg. Chem. 5, 2076 (1966).
  • 4R. F. Portpr and S. K. Gupta, J. Phys. Chem. 68, 2732 (1964).
  • 5M. Vinodkumar, K. Korot, C. Limbachiya, and B. K Antony, J. Phys. B 41, 245202 (2008).
  • 6(a) M. W. Chase Jr., NIST-JANAF Themochemical Tables, Fourth Edition., J. Phys. Chem. Ref. Data Monograph 9, 1 (1998).
  • 7W. G. Mallard, Ed., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Gai?thersburg: National Institute of Standards and Tech?nology, (1996), http://webbook.nist.gov/chemistryj.
  • 8S. Komatsu and Y. Moriyoshi, J. Appl. Phys. 66, 1180 (1989).
  • 9D. J. Grant and D. A. Dixon, J. Phys. Chem. A 113, 777 (2009).
  • 10R. Z. Zhang, X. H. Li, and X. Z. Zhang, Chin. J. Chem.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部