期刊文献+

Efficient user selection for multi-cell multi-user MIMO systems with limited backhaul

Efficient user selection for multi-cell multi-user MIMO systems with limited backhaul
原文传递
导出
摘要 Multi-cell multi-user multiple-input multiple-output (MC-MU-MIMO) is a promising technique to eliminate inter-user interference and inter-cell cochannel interference in wireless telecommunication systems. As the large number of users in the system and the limited number of simultaneously supportable users with MC-MU-MIMO, it is necessary to select a subset of users to maximize the total throughput. However, the fully centralized user selection algorithms used in single cell system, which will incur high complexity and backhaul load in multi-cell cooperative processing (MCP) systems, are not suitable to MC-MU-MIMO systems. This article presents a two cascaded user selection method for MCP systems with multi-cell block diagonalization. In this paper, a local optimal subset of users, which can maximize the local sum capacity, is first chosen by the greedy method in every cooperative base station in parallel. Then, all the cooperative base stations report their local optimal users to the central unit (CU). Finally, the global optimal users, which can maximize the global sum capacity of MCP systems, are selected from the aggregated local optimal users at the CU. The simulation results show that the proposed method performs closely to the optimal and centralized algorithm. Meanwhile, the complexity and backhaul load are reduced dramatically. Multi-cell multi-user multiple-input multiple-output (MC-MU-MIMO) is a promising technique to eliminate inter-user interference and inter-cell cochannel interference in wireless telecommunication systems. As the large number of users in the system and the limited number of simultaneously supportable users with MC-MU-MIMO, it is necessary to select a subset of users to maximize the total throughput. However, the fully centralized user selection algorithms used in single cell system, which will incur high complexity and backhaul load in multi-cell cooperative processing (MCP) systems, are not suitable to MC-MU-MIMO systems. This article presents a two cascaded user selection method for MCP systems with multi-cell block diagonalization. In this paper, a local optimal subset of users, which can maximize the local sum capacity, is first chosen by the greedy method in every cooperative base station in parallel. Then, all the cooperative base stations report their local optimal users to the central unit (CU). Finally, the global optimal users, which can maximize the global sum capacity of MCP systems, are selected from the aggregated local optimal users at the CU. The simulation results show that the proposed method performs closely to the optimal and centralized algorithm. Meanwhile, the complexity and backhaul load are reduced dramatically.
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2012年第1期18-23,共6页 中国邮电高校学报(英文版)
关键词 multiple-input multiple-output (MIMO) THROUGHPUT cochannel interference user selection base stations cooperation cellularcommunications multiple-input multiple-output (MIMO), throughput, cochannel interference, user selection, base stations cooperation, cellularcommunications
  • 相关文献

参考文献1

二级参考文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部