期刊文献+

时滞反应扩散Hopfield神经网络的滑动模控制 被引量:1

Sliding mode control for Hopfield neural networks with time-delays and reaction-diffusion terms
下载PDF
导出
摘要 研究了一类具有S--分布时滞和反应扩散项的Hopfield神经网络的滑动模控制问题.首先改进了一类Hanalay不等式,给出了一种范数不等式.然后通过等效控制方法建立了系统的滑动模态方程,并利用不等式技巧分析了它的吸引集的存在性和零点的指数稳定性.在此基础上设计了变结构控制器,给出了运动轨线到达滑动模态区的时间估计.最后给出了一个例子验证了本文的结果,并利用MATLAB作出了仿真. The sliding mode control problems of a class of Hopfield neural networks with Stype distributed timedelays and reaction diffusion terms are investigated. First, the improved Hanalay inequality and norm inequality are presented. Next, the sliding mode equation is derived by using the equivalent control method; and the existence of the attraction sets and exponential stability of this system are discussed by using these inequalities. Then, the variable structure controller is designed; the approximate time duration from any initial state to sliding manifolds is also obtained. Finally, an example is given to illustrate the practical application of the propose scheme, and the simulation is carried out by using the MATLAB.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第1期47-52,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(11171374 10871117)
关键词 HOPFIELD神经网络 滑动模态 变结构控制 S-分布时滞 Hopfield neural network sliding mode variable structure control Stype distributed delays
  • 相关文献

参考文献6

二级参考文献64

共引文献16

同被引文献19

  • 1曾志刚,廖晓昕,汪增福.输入向量控制细胞神经网络全局指数稳定[J].控制理论与应用,2006,23(1):86-88. 被引量:3
  • 2周建平,陈红军,王林山.一类变时滞神经网络的全局指数稳定性[J].控制理论与应用,2007,24(3):431-434. 被引量:1
  • 3WANG R, TANG Z. A learning method in Hopfield neural network for combinational optimization problem [J]. Neurocomputing, 2002, 48(4): 1021 - 1024.
  • 4ZHANG J. Global stability analysis in Hoplield neural net- works [J]. Applied Mathematics Letters, 2003, 16(6): 925 - 931.
  • 5ZHAO H. Global exponential stability and periodicity of cellular neural networks with variable delays [J]. Physics Letter A. 2005. 336(4/5): 331 - 341,.
  • 6ZHAO H, WANG L, MAC. Hopf bifurcation and stability analysis on discrete-time Hopfield neural network with delay [J]. Nonlinear Analysis: Real World Applications, 2007, 9(I): 103 - 113.
  • 7CAMPBELL S, Stability and bifurcation of a simple neural network with multiple time delays [J]. Fields Institute Communications, 1999, 21(2): 65 - 79.
  • 8ZHAO H, MAO Z. Boundedness and stability of nonautonomous cel- lular neural networks with reaction-diffusion terms [J]. Mathematics and Computers in Simulation, 2009, 79(2): 1603 - 1617.).
  • 9TURING A. The chemical basis of morphogensis [J]. Philosophical Transactions for the Royal Socierol of London, 1952, 237(641 ): 37 - 72.
  • 10MURRAY J. Mathematical biology: Ⅱ [M] //Spatial Models and Biomedical Applications. Berlin: Springer-Verlag, 2003.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部