摘要
证明了一类G*-代数的弱无孔性质可以遗传到通过此类G*-代数迹逼近后得到的G*-代数中.同时证明了具有弱无孔性质的G*-代数经过具有迹Rokhlin性质的有限群作用后得到的交叉积C*-代数也具有弱无孔性质。
It is shown that weakly unperforated property in a class of C*-algebras is pos- sessed by simple C*-algebras which can be tracially approximated by C*-algebras in that class of C*-algebras. The authors prove that the crossed product of an infinite dimensional simple separable unital C*-algebra with weakly unperforated property by an action of a finite group with the tracial Rokhlin property has the weakly unperforated property.
出处
《数学年刊(A辑)》
CSCD
北大核心
2012年第1期113-122,共10页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11071159
No.11101268)
上海海事大学科研基金(No.20110052)资助的项目