期刊文献+

基于距离的自适应Web数据库记录匹配方法 被引量:5

Distance-Based Adaptive Record Matching for Web Databases
原文传递
导出
摘要 Web数据库环境的重复记录识别是Deep Web信息集成的重要步骤,具有查询依赖性、缺乏训练样本、在线处理要求等特征,导致现有的实体识别技术无法适用.在分析现有方法基础上,引入动态属性权重调整思想,提出基于距离的自适应记录匹配算法,在计算记录对的相似度时,加大匹配记录集合中相似度较大的属性的权重,并加大非匹配记录集合中相似度较小的属性的权重,迭代处理从而达到自适应动态调整各个属性权重的目标.该方法不需要训练样本,也不需要人工参与,实验结果表明其适用于Web数据库环境的重复记录识别处理. One of the important steps of Deep Web information integration is identifying duplicate records over multiple Web databases.Due to the features such as query-dependency,the lack of training samples,and the online processing requirements,most state-of-the-art record matching methods are not applicable for the Web database scenario.Based on the analysis of the existing methods,an adaptive distance-based record matching method is proposed by introducing the idea of dynamic attributes' weights adjustment.In the iterative process of the calculation for the similarity of records,the weight of each attribute is dynamically recalculated by means of increasing the weights of the attributes with the bigger similarity in the matching records set and increasing the weights of the attributes with the smaller similarity in the non-matching records set.The proposed method does not require training data as well as human efforts and the experimental results show that it works well for the Web database scenario.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2012年第1期89-94,共6页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(60975050) 高等学校博士学科点专项科研基金(20070486081) 中央高校基本科研业务费专项资金(6081014)资助项目
关键词 WEB数据库 记录匹配 实体识别 比较向量 权重向量 Web databases record matching entity identification comparison vector weight vector
  • 相关文献

参考文献20

  • 1Madhavan J,Jeffery S,Cohen S,et al.Web-scale dataintegration:You can only afford to pay as you go[C]//Proceedings of the 5th Biennial Conference on Inno-vative Data Systems Research(CIDR).Los Alami-tos:IEEE Computer Society Press,2007:342-350.
  • 2崔晓军,彭智勇,杨先娣,张莹.Deep Web信息按需集成研究综述[J].武汉大学学报(理学版),2009,55(4):465-472. 被引量:2
  • 3Elmagarmid A K,Ipeirotis P G,Verykios V S.Dupli-cate record detection:A survey[J].IEEE Transac-tions on Knowledge and Data Engineering,2007,19(1):1-16.
  • 4Winkler W E.Methods for record linkage and Bayes-ian networks[C/OL].[2010-12-20].http://www.amstat.org/Sections/Srms/Proceedings/y2002/Files/JSM2002-000648.pdf.
  • 5Verykios V S,Moustakides G V,Elfeky M G.ABayesian decision model for cost optimal record matc-hing[J].The VLDB Journal,2003,12(1):28-40.
  • 6Verykios V S,Moustakides G V.A generalized costoptimal decision model for record matching[C]//Pro-ceedings of the 2004 International Workshop on In-formation Quality in Information Systems.NewYork:ACM Press,2004:20-26.
  • 7Cochinwala M,Kurien V,Lalk G,et al.Efficient datareconciliation[J].Information Sciences,2001,137(1-4):1-15.
  • 8Christen P.Automatic record linkage using seedednearest neighbour and support vector machine classifi-cation[C]//Proceeding of the 14th ACM SIGKDDInternational Conference on Knowledge Discoveryand Data Mining.New York:ACM Press,2008:151-159.
  • 9Bilenko M,Mooney R,Cohen W,et al.Adaptive namematching in information integration[J].IntelligentSystems IEEE,2005,18(5):16-23.
  • 10Cohen W W,Richman J.Learning to match and clus-ter large high-dimensional data sets for data integration[C]//Proceedings of the Eighth ACM SIGKDD In-ternational Conference on Knowledge Discovery andData Mining.New York:ACM Press,2002:475-480.

二级参考文献50

  • 1LIU Wei,LI Xian,LING Yanyan,ZHANG Xiaoyu,MENG Xiaofeng.A Deep Web Data Integration System for Job Search[J].Wuhan University Journal of Natural Sciences,2006,11(5):1197-1201. 被引量:6
  • 2BrightPlanet. com. The Deep Web: Surfacing Hidden Value[ EB/OL]. [2008-05-28]. http://brightplanet. com/resources/details/deepweb, html.
  • 3Chang K C,He B,I.i C,et al. Structured Databases on the Web: Observations and Implications [ C/OL][2008-05-28]. http://eagle, cs. uiuc. edu/ pubs/2004/ dwsurvey-siKmodrecord-chl pz-aug04, pd f .
  • 4Ortega-Binderberger M. Integrating Similarity Based Retrieval and Query Refinement in Databases [D]. Urbana-Champaign : UIUC, 2002.
  • 5Motto A. Vague: A User Interface to Relational Databases That'Permits Vague Queries[J]. ACM Transactions on Office Information Systems, 1998,6(3): 187-214.
  • 6Nambiar U, Kambhampati S. Answering Imprecise Queries over Web Databases[C]//Proceedings of the 31st VLDBConference. New York.. ACM Press, 2005 : 1350-1353.
  • 7Nambiar U, Kambhampati S. Answering Imprecise Queries over Autonomous Web Databases [C/OL]. [2008- 05-28]. http://rakaposhi, eas. asu. edu/ICDEO6-cmrdy. pdf .
  • 8He B, Patel M, Zhang Z, el al. Accessing the Deep Web: A Survey [J]. Communications of the ACM. ( CACM), 2007,50(5) : 94-101.
  • 9Raghavan S, Molina H G. Crawling the Hidden Web [C/OL]. [2008-05-28]. http://www, vldb. org/conf/ 2001/P129. pdf.
  • 10Cope J ,Craswell N, Hawking D. Automated Discovery of Search Interfaces on the Web[C/OL]. [2008-05- 28]. http://crpit, com/confpapers/CRPITV17Cope. pdf.

共引文献1

同被引文献43

  • 1凌妍妍,刘伟,王仲远,艾静,孟小峰.Deep Web数据集成中的实体识别方法[J].计算机研究与发展,2006,43(z3):46-53. 被引量:4
  • 2孟小峰,周龙骧,王珊.数据库技术发展趋势[J].软件学报,2004,15(12):1822-1836. 被引量:176
  • 3强保华,陈凌,余建桥,吴开贵,吴中福.基于BP神经网络的属性匹配方法研究[J].计算机科学,2006,33(1):249-251. 被引量:4
  • 4刘伟,孟小峰,孟卫一.Deep Web数据集成研究综述[J].计算机学报,2007,30(9):1475-1489. 被引量:136
  • 5MADHAVAN J,JEFFERY S R,COHEN S. Web-scale data integration:you can only afford to pay as you go[A].California,USA:CIDR,2007.342-350.
  • 6CHAUDHURI S,GRANTI V,MOTWANI R. Robust identification of fuzzy duplicates[A].Washington,DC:IEEE Computer Society,2005.865-876.
  • 7SHEN W,DEROSE P,VU L. Source-aware entity matching:a compositional approach[A].Washington,DC:IEEE Computer Society,2007.196-205.
  • 8马锐.人工神经网络原理[M]北京:机械工业出版社,2010.
  • 9朱命冬;申德容;寇月.一种应用于Deep Web环境下重复记录识别模型[J]计算机研究与发展,2009(Suppl):14-21.
  • 10LI W S. SeEMINT:a tool for identifying attribute correspondences in heterogeneous database using neural networks[J].Data and Knowledge Engineering,2000,(01):49-84.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部