期刊文献+

基于Adaboost-高斯过程分类的人脸表情识别 被引量:14

Facial expression recognition based on Adaboost-Gaussian process classification
下载PDF
导出
摘要 为了弥补Ababoost分类器分类精度不够、训练耗时的缺点,利用高斯过程分类器分类精度高、计算复杂度低的优势,提出一种改进的表情识别方法.该算法将高斯过程分类(GPC)和Adaboost的人脸表情识别算法相结合,在训练二分类Adaboost时利用高斯过程分类器训练弱分类器;把这些弱分类器组合成一个总分类器,将二分类Adaboost-GPC扩展为多类分类算法.采用Gabor提取面部表情特征,由于Gabor特征提取后存在维度变高、冗余大的问题,引入二维主成分分析(2DPCA)对Gabor特征进行选择.基于Cohn-Kanade和JAFFE数据库的实验结果表明,该算法在识别正确率和速度方面的表现均较好. By using the Gaussian process classifier's advantages of high classification accuracy and low computational complexity,an improved expression recognition method was proposed in order to modify the Adaboost's disadvantage of poor classification accuracy and long time consuming.The facial expression recognition algorithm combines Gaussian process classification(GPC) with Adaboost.The algorithm uses the Gaussian process classifier as weak classifier when training Adaboost.Then these weak classifiers are combined into an overall classification,and the Adaboost is extended into a multi-class classification algorithm.Gabor wavelet transformation is used to extract facial expressional features,since the high-dimensional Gabor features are redundant;the two-dimensional principal component analysis(2DPCA) is used to select these features.Experimental results based on the Cohn-Kanade database and JAFFE database show that the accuracy and recognition speed of the algorithm are inspiring.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第1期79-83,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60702069 60672018) 浙江省自然科学基金资助项目(Y1080851)
关键词 ADABOOST 高斯过程 分类器 表情识别 Adaboost Gaussian process classifier facial expression recognition
  • 相关文献

参考文献20

  • 1TIAN Y, KANADE T, COHN J. Evaluation of Gabor wavelet-based facial action unit recognition in image sequences of increasing complexity [C] // Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition. Washington: IEEE, 2002:26-30.
  • 2MULLER S, WALLHOFF F, HULSKEN F, et al. Facial expression recognition using pseudo 3-D hidden Markov models [C] // Proceedings of International Conference on Pattern Recognition. Quebec City : [ s. n. ], 2002:32 - 35.
  • 3ZHANG Y, JI Q. Active and dynamic information fusion for facial expression understanding from image sequences [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005, 27(5) : 699 - 714.
  • 4KAPPOR A, QI Y, PICARD R W. Fully automatic upper facial action recognition [C] // Proceedings of Analysis and Modeling of Faces and Gestures. Nice, France: [s.n.], 2003: 195-202.
  • 5LIU C, SHUM H Y. Kullback-Leibler boosting [C] // Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition. Wisconsin: IEEE, 2003 : 587 - 594.
  • 6BARTLETT M S, LITTLEWOET G, FRANK M, et al. Recognizing facial expression: machine learning and application to spontaneous behavior [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 568- 573.
  • 7PANTIC M, ROTHKRANTZ L. Facial action recognition for facial expression analysis from static face images [J]. IEEE Transactions on Systems, Man and Cybernetics:Part B, 2004, 34 (3) : 1449 - 1461.
  • 8CHELLAPPA R, WILSON C L, SIROHEY S. Human and machine recognition of faces: a survey [C]//Proceedings of the IEEE.[S.l.] : IEEE, 1995 : 705 - 740.
  • 9PANTIC M, ROT H K, RANTZ L J M. Automatic analysis of facial expressions: the state of the art [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (12) : 1424 - 1445.
  • 10杨康,陈晓,彭国华.基于统计学习的人脸表情分类[J].计算机仿真,2009,26(6):237-241. 被引量:2

二级参考文献62

  • 1左坤隆,刘文耀.基于活动外观模型的人脸表情分析与识别[J].光电子.激光,2004,15(7):853-857. 被引量:19
  • 2秦斌,吴敏,王欣,阳春华.基于多智能体强化学习的焦炉集气管压力多级协调控制[J].电子学报,2006,34(10):1847-1851. 被引量:3
  • 3王晓丹,孙东延,郑春颖,张宏达,赵学军.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版),2006,7(6):54-57. 被引量:22
  • 4Turk M,Pentland A, Face recognition using Eigenfaces[C],In:Proc IEEE Conf On computer Vision and Pattern Pecognition,1991:586-591.
  • 5A Pentland,B Moghaddam,Tstarner,Vicw-based and mododdular eigenspaces for face recognition for face recognition[C].In:Proc IEEE conf On computer Vision and Pattern Recognition,1994:84-91.
  • 6Jian Yang,Avid Zhang.Two-Dimensional PCA:A New Approaoh to Appearance- based Face Representation and Recognition [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2004;26 (1) : 131-137.
  • 7Lyons M, Akamatsu S, Kamachi M.Coding facial expressions with Gebor wavelets[C].In:Proc Third IEEE conf Face and Gesture Recognition, 1998:200-205.
  • 8L I Kuncheva,J C Bezdek,R P W Duin.Decision templates for multiple classifier fusion:an experimental comparison[J].Pattern Recognition, 2001 ; 34 : 299-314.
  • 9M Sugeno.Fuzzy measures and fuzzy integrals:A Survey.Fuzzy Automata and Decision Processes Amsterdam : North Holland, 1977 : 89- 102.
  • 10VAPNIK V N. The nature of statical learning theory [ M ]. London: Springer-Verlag, 1995.

共引文献66

同被引文献63

  • 1姜大龙,高文,王兆其,陈益强.面向纹理特征的真实感三维人脸动画方法[J].计算机学报,2004,27(6):750-757. 被引量:9
  • 2朱健翔,苏光大,李迎春.结合Gabor特征与Adaboost的人脸表情识别[J].光电子.激光,2006,17(8):993-998. 被引量:48
  • 3薛雨丽,毛峡,张帆.BHU人脸表情数据库的设计与实现[J].北京航空航天大学学报,2007,33(2):224-228. 被引量:20
  • 4祝磊,朱善安.基于二维广义主成分分析的人脸识别[J].浙江大学学报(工学版),2007,41(2):264-267. 被引量:12
  • 5F CHENG, J YU, H XIONG, Facial Expression Recognition in JAFFE Dataset Based on Gaussian Process Classitlcation[J].Neural Networks, IEEE Transactions on,2010,21(10): 1685- 1690.
  • 6X XIE, K.M LAM, Face recognition using elastic local reconstruction based on a single face image[J].Pattem Recognition,2008, 41(1): 406-417.
  • 7张小华,王然.基于图像特征的偏微分方程去噪方法[J].新型工业化,2011,(6):9-14.
  • 8W1LIGHT, J.YANG, A.Y.,etal, Robust Face Recognition via Sparse Representafion[J].Pattem Analysis and Machine Intelligence, IEEE Transactions on, 2009,31(2): 210-227.
  • 9H CHENG, Z LIU, etal., Sparse representation and learning in visual recognition: Theory and applications[J].Signal Processing,2013, 93(6), 1408-1425.
  • 10J. MAIRAL, E BACH, J. PONCE, and G. SAPIRO, Online dictionary learning for sparse coding[C]. In Proceedings of the International Conference on Machine Learning (ICML), 2009a.

引证文献14

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部