期刊文献+

压力旋流喷嘴雾化滴径分布的模型预测和实验 被引量:4

Model prediction and experiment study on spray droplet size distribution of pressure swirl nozzle
下载PDF
导出
摘要 利用激光片光荧光诱导技术(PLIF)测得不同液体流量下的压力旋流喷嘴雾化滴径分布,用平均粒径约束的三参数最大熵模型对雾化滴径分布进行预测。将理论预测分布与实验结果进行拟合,得到广义伽玛参数α随着液体流量变化的一般表达式。用拟合模型对粒径分布的特点和规律进行总结,结果表明:拟合模型能很好地预测粒径的数量分布,且不受小液滴的影响;随着液体流量的增加,液滴粒径分布范围逐渐变窄,峰值液滴粒径呈线性减小趋势,峰值液滴百分数呈线性增加趋势。 The atomized droplet size distribution of pressure swirl nozzle was obtained through Planar Laser Induced Fluorescence(PLIF)method in different liquid flows.The theoretical droplet size distribution was predicted using the three parameter maximum entropy model,which was constrained by average droplet size.The predictive distribution was fitted with the experimental result,and the general expression of generalized gamma function parameter α was obtained with the different liquid flows.Then,the characteristics and laws of droplet size distribution were summarized through the fitted model.The results show that the fitted model can well predict the number distribution and was not affected by small droplets.With the increase of liquid flow,droplet size distribution range becomes narrow,peak droplet size reduces linearly and the percentage of peak droplet size increases linearly.
出处 《化工进展》 EI CAS CSCD 北大核心 2012年第3期528-532,共5页 Chemical Industry and Engineering Progress
基金 中科院化学激光重点实验室开放基金(KLCL200901) 山东省自然科学青年基金(ZR2009BL015)项目
关键词 液体喷雾 喷雾滴径 最大熵模型 pressure swirl nozzle atomized droplet size maximum entropy model
  • 相关文献

参考文献19

  • 1曹建明.喷雾学研究的国际进展[J].长安大学学报(自然科学版),2005,25(1):82-87. 被引量:42
  • 2Lefebvre A H. Atomization and Sprays[M]. New York: Hemisphere Press, 1989.
  • 3Kapur J N. Twenty-five years of maximum entropy principle[J], J. Math. Phys. Sci., 1983, 17 (3): 103-156.
  • 4Babinsky E B, Sojka P E. Modeling drop size distributions [J]. Progress in Energy and Combustion Science, 2002, 28: 303-329.
  • 5Li Xianguo, Li Meishen. Drop size distribution in sprays based on maximization of entropy generation[J]. Entropy, 2003, 5: 417-431.
  • 6Sellens R W, Brzustowski T A. A prediction of the drop size and velocity distribution in a spray from first principles[J]. Atomization andSprayTechnol., 1985, 1 (2): 85-102.
  • 7Sellens R W, Brzustowski T A. A simplified prediction of droplet velocity distributions in a spray[J]. Combusion andFlame, 1986, 65: 273-279.
  • 8Sellens R W. Prediction of the drop size and velocity distribution in a spray based on the maximum entropy formalism[J]. Part. Part. Syst. Charact., 1989, 6: 17-27.
  • 9Ahmadi M, Sellens R W. A simplified maximum entropy based dropsize distribution[J]. Atomization andSprays, 1993, 3: 291-310.
  • 10Li X, Tankin R S. Droplet size distribution: A derivation of a Nukiyama-Tanasawa type distribution function[J]. Combusion Sci. Technol., 1987, 56: 65-76.

二级参考文献45

  • 1Dodge L G. Change of calibration of diffraction based particle sizes in dense sprays[J]. Optical Engineering, 1984, 23(5) :626--630.
  • 2Hirleman E D. On-line calibration technique for laser diffraction droplet sizing instruments[J].ASME Paper, 1983, Paper No 83-GT-232.
  • 3Weber C. Disintegration of liquid jets[J]. Z Angew Math Meeh, 1931, 11(2):136--159.
  • 4Haenlein. Disintegration of a liquid jet[J]. NACA,1932, TN 659:56--60.
  • 5Ohnesorge W. Formation of drops by nozzles and the breakup of liquid jets[J].Z Angew Math Mech,1936, 16:355--358.
  • 6Sterling S. The instability of capillary jets[J]. J Fluid Mech, 1975, 68:477--495.
  • 7Rayleigh L. On the instability of jets[J]. Proe London Math Soc, 1978,10: 4--13.
  • 8Keller R, Tu Y O. Spatial instability of a jet[J].Phys Fluids, 1973, 16:2052--2055.
  • 9Reits B. Mechanism of atomization of a liquid jet[J].Phys Fluids A, 1982, 25:1730--1742.
  • 10Lefebvre A H. Atomization and sprays [M]. NewYork:Hemisphere Press, 1989.

共引文献41

同被引文献65

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部