摘要
Support vector clustering (SVC) is an important boundary-based clustering algorithm in multiple applications for its capability of handling arbitrary cluster shapes.However,SVC's popularity is degraded by its highly intensive time complexity and poor label performance.To overcome such problems,we present a novel efficient and robust convex decomposition based cluster labeling (CDCL) method based on the topological property of dataset.The CDCL decomposes the implicit cluster into convex hulls and each one is comprised by a subset of support vectors (SVs).According to a robust algorithm applied in the nearest neighboring convex hulls,the adjacency matrix of convex hulls is built up for finding the connected components;and the remaining data points would be assigned the label of the nearest convex hull appropriately.The approach's validation is guaranteed by geometric proofs.Time complexity analysis and comparative experiments suggest that CDCL improves both the efficiency and clustering quality significantly.
Support vector clustering (SVC) is an important boundary-based clustering algorithm in multiple applications for its capability of handling arbitrary cluster shapes.However,SVC's popularity is degraded by its highly intensive time complexity and poor label performance.To overcome such problems,we present a novel efficient and robust convex decomposition based cluster labeling (CDCL) method based on the topological property of dataset.The CDCL decomposes the implicit cluster into convex hulls and each one is comprised by a subset of support vectors (SVs).According to a robust algorithm applied in the nearest neighboring convex hulls,the adjacency matrix of convex hulls is built up for finding the connected components;and the remaining data points would be assigned the label of the nearest convex hull appropriately.The approach's validation is guaranteed by geometric proofs.Time complexity analysis and comparative experiments suggest that CDCL improves both the efficiency and clustering quality significantly.
基金
supported by the National Natural Science Foundation of China under Grant No. 60972077 and partially under Grant No. 70921061
the National Science and Technology Major Program under Grant No. 2010ZX03003-003-01
the Natural Science Foundation of Beijing under Grant No. 9092009
the Fundamental Research Funds for the Central Universities under Grant No.2011RC0212