摘要
假设图G的边可靠,而顶点可靠的独立概率为p,以(n,m)表示具有n个顶点m条边的图的集合.若对于所有1 p∈(0,1),图G均为(n,m)中的最可靠图,则称G为一致最优图.本文证明了完全k部图K(b,(b+1)k h 1,(b+2)h)在其图类中是一致最优的,而当i≥3时,完全k部图K(b,(b+1)k h 2,(b+2)h,b+i)在其图类中不是一致最优的.
For a graph G, suppose that edges never fail and vertices operate independently of each other with a constant probability p. Denote by Ω(n, m) the set of graphs with n vertices and m edges. The graph G is called uniformly optimal in Ω(n,m) if, for all vertex-failure probabilities 1 -p ∈ (0,1), the graph G is the most reliable graph. This paper proves that the complete k-partite graphs K(b, (b + 1)k-h-1, (b + 2)h) are uniformly optimal in their classes, while for i 〉 3, the complete k-partite graphs K(b, (b + 1)k-h-2, (b + 2)h, b + i) are not uniformly optimal in their classes.
出处
《新疆大学学报(自然科学版)》
CAS
2012年第1期1-8,共8页
Journal of Xinjiang University(Natural Science Edition)
基金
supported by NSF(2010211A06)of Xinjiang
BS(090106)of Xinjiang University
关键词
网络可靠性
完全多部图
一致最优图
Network reliability
complete multi-partite graph
uniformly optimal graph