摘要
连通图G的RCW数定义为RCW(G)=Σu,v V(G)1d+1 d(u,v|G),其中V(G)是图的点集,d(u,v|G)是点u与v之间的距离,d是图G的直径.首先定义了具有完美匹配和奇长直径的一类树,进而确定了这类树的最小,第二小,以及第三小RCW数.
The reciprocal complementary Wiener number of a connected graph G is defined as RCW(G) = ∑(u,v)v(G) 1/d+1-d(u,v(G) where V(G) is the vertex set; d(u, vlG) is the distance between vertices u and v; d is the diameter of G. We firstly give a class of trees with perfect matchings and odd diameter, and we further determine the trees with the smallest, the second smallest and the third smallest reciprocal complementary Wiener numbers.
出处
《新疆大学学报(自然科学版)》
CAS
2012年第1期53-57,共5页
Journal of Xinjiang University(Natural Science Edition)
关键词
Randic′指标
直径
树
reciprocal complementary Wiener number
distance
diameter
trees