期刊文献+

具有完美匹配和奇长直径的一类树的RCW数(英文)

Reciprocal Complementary Wiener Numbers of Trees with Perfect Matchings and Odd Diameter
下载PDF
导出
摘要 连通图G的RCW数定义为RCW(G)=Σu,v V(G)1d+1 d(u,v|G),其中V(G)是图的点集,d(u,v|G)是点u与v之间的距离,d是图G的直径.首先定义了具有完美匹配和奇长直径的一类树,进而确定了这类树的最小,第二小,以及第三小RCW数. The reciprocal complementary Wiener number of a connected graph G is defined as RCW(G) = ∑(u,v)v(G) 1/d+1-d(u,v(G) where V(G) is the vertex set; d(u, vlG) is the distance between vertices u and v; d is the diameter of G. We firstly give a class of trees with perfect matchings and odd diameter, and we further determine the trees with the smallest, the second smallest and the third smallest reciprocal complementary Wiener numbers.
作者 胡容维 赵飚
出处 《新疆大学学报(自然科学版)》 CAS 2012年第1期53-57,共5页 Journal of Xinjiang University(Natural Science Edition)
关键词 Randic′指标 直径 reciprocal complementary Wiener number distance diameter trees
  • 相关文献

参考文献9

  • 1Wiener H. Structural determination of the paraffin boiling points[J]. J Amer Chern Soc, 1947,69: 17-20.
  • 2Dobrynin A A, Entringer R, Gutman I. Wiener index of trees: Theory and applications[J]. Acta Appl Math, 2001, 66: 211-249.
  • 3Dobrynin A A, Gutman I, Klavzar S, Zigert P. Wiener index of hexagonal systems[J]. Acta Appl Math, 2002, 72: 247-294.
  • 4Ivanciuc O. QSAR comparative study of Wiener descriptors for weighted molecular graphs[J]. J Chern Inf Comput Sci, 2000, 40: 1412-1422.
  • 5Ivanciuc 0, Ivanciuc T, Balaban A T. The complementary distance matrix, a new molecular graph metric[J]. ACH-Models Chern, 2000, 137: 57-82.
  • 6Ivanciuc 0, Ivanciuc T, Balaban A T. Quantitative structure-property relationship evaluation of structural descriptors derived from the distance and reverse Wiener matrices[J]. Internet Electron J Mol Des, 2002, 1: 467-487.
  • 7Ivanciuc 0, Ivanciuc T, Balaban A T. Vertex- and edge-weighted molecular graphs and derived structural descriptors, in: 1. Devillers, A.T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR[M]. Gordon and Breach, The Netherlands, 1999, 169-220.
  • 8Zhou B, Cai X, Trinajstic N. On reciprocal complementary Wiener number[J]. Discrete Appl Math, 2009,157: 1628-1633.
  • 9Cai X, Zhou B. Reciprocal complementary Wiener numbers of trees, unicyclic graphs and bicyclic graphs[J]. Discrete Appl Math, 2009, 157: 3046-3054.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部