期刊文献+

智能电网实时电价研究综述:模型与优化方法 被引量:9

Review on Real-time Pricing for Smart Grid:Models and Optimization Methods
下载PDF
导出
摘要 在智能电网中,实时电价(real-time pricing,RTP)是解决智能电网供需平衡的理想需求响应机制,具有节能环保、保障用户和电能提供者最大化效益等方面的优势。在分析实时电价机制优化模型国内外发展现状基础上,总结出了实时电价优化模型:从用户的总需求量水平出发建立优化模型。相应地,总结了解决这一模型的优化方法:对偶法、内点法、分布式迭代法(分步式法)以及博弈论等优化求解方法。最后,展望了智能电网中实时电价机制的进一步研究方向。 In Smart Grid,real-time pricing scheme is an ideal demand response mechanism to solve the supply and demand balance,which has advantages in energy saving and environmental protection and maximum benefit guarantee for users and electricity providers.Based on the analysis of the domestic and international development of real-time pricing mechanism on the optimization models and the optimization methods,one kind of model is summarized:an optimization model from the users' total demands level.Accordingly,some optimization methods are given,including dual method,interior point method,distributed iteration method and game theory.Finally,the development direction of the real-time pricing mechanism in the smart grid is also discussed in this paper.
出处 《工业控制计算机》 2012年第2期87-88,90,共3页 Industrial Control Computer
关键词 智能电网 实时电价 需求响应 优化模型 优化方法 smart grid real-time pricing demand response optimization models optimization methods
  • 相关文献

参考文献14

  • 1XIE Z,MANIMARAN G,VITTAL V,PHADKE A G,et al.An in-formation architecture for future power systems and its relia-bility analysis[J].IEEE Transaction on Power System,2002,17(3):857-863.
  • 2曾鸣,王冬容,陈贞.需求侧响应在电力批发市场中的应用[J].电力需求侧管理,2009,11(1):13-16. 被引量:9
  • 3BORENSTEIN S.The long-run ef芽ciency of real-time elec-tricity pricing[J].Energy Journal,2005,26(3):93-116.
  • 4HOLLAND S P,MANSUR E T.The short-run effects of time-varying prices in competitive electricity markets[J].EnergyJournal,2006,27(4):127-155.
  • 5张钦,王锡凡,王秀丽,王建学.需求侧实时电价下用户购电风险决策[J].电力系统自动化,2008,32(13):16-20. 被引量:27
  • 6张钦,王锡凡,王建学.需求侧实时电价下供电商购售电风险决策[J].电力系统自动化,2010,34(3):22-27. 被引量:34
  • 7曾鸣,许子智,王江波,田廓,李晨.实时电价用户比例增加对电力市场经济效率的影响[J].电网技术,2010,34(6):82-86. 被引量:13
  • 8CONEJO A J,MORALES J M,Baringo L.Real-time demandresponse model[J].IEEE Transactions on Smart Grid,2010,1(3):236-242.
  • 9SAMADI P,MOHSENIAN-RAD A,SCHOBER R,et al.Optimalreal-time pricing algorithm based on utility maximization forsmart grid[C]//2010 first IEEE International Conference onSmart Grid Communications,Oct 4-6,2010,Gaithersburg,MD:415-420.
  • 10MOHSENIAN-RAD A H,WONG V W S,JATSKEVICH J,SCHOBER R.Optimal and autonomous incentive-based ener-gy consumption scheduling algorithm for smart grid[C]//In-novation Smart Grid Technologies,January 19-2,2010,GaithersburgmMD:1-6.

二级参考文献53

共引文献72

同被引文献64

  • 1华贲.过程系统的能量综合和优化[J].化工进展,1994,13(3):6-15. 被引量:30
  • 2罗向龙,华贲,张冰剑.基于管网模拟的蒸汽动力系统多周期运行优化[J].石油学报(石油加工),2006,22(5):56-62. 被引量:14
  • 3李扬,王蓓蓓,万秋兰.基于需求侧可靠性差别定价的电力市场交易新机制[J].电力系统自动化,2007,31(4):18-22. 被引量:26
  • 4TAYLOR J, MAITRA A, ALEXANDER M, et al. Evaluation of the impact of plug-in electric vehicle loading on distribution system operations [ C ]///2010 IEEE Power and Energy Society General Meeting.
  • 5QIAN K J, ZHOU C K, YUAN Y. Modeling of load demand due to EV battery charging in distribution systems [J]. IEEE Trans on Power Systems,2011,26 (2) : 802-810.
  • 6J K Grubera, M Prodanovica. Two - stage optimization for building energy management[ J]. Energy Procedia, 2014,62:346 - 354.
  • 7P Samadi, et al. Optimal real - time pricing algorithm based on u- tility maximization for smart grid E C ]. First IEEE Conference on Smart Grid Communications. Gaithersburg: IEEE, 2010:415 - 420.
  • 8P Tarasak. Optimal real - time pricing under load uncertainty based on utility maximization for smart grid[ C ]. Smart Grid Man- agement and Service Design (IEEE SmartGridComm 2011 ). Sin- gapore : IEEE, 2011:321 - 326.
  • 9Wang Yu, Mao Shi -wen, R M Nelms. Distributed online algo- rithm for optimal real -time [ J ]. IEEE Internet of Things Journal, 2014,1 ( 1 ) :70 - 80.
  • 10Song Xin, Qu Jia - yu. An improved real - time pricing algorithm based on utility maximization for smart grid [ C ]. Proceeding of the 11 th World Congress on Intelligent Control and Automation. Shenyang: IEEE, 2014:2509 - 2513.

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部