期刊文献+

基于模糊Tsallis熵和混沌蛙跳算法的快速红外目标分割

Fast Infrared Target Segmentation Based on Fuzzy Tsallis Entropy and Chaos Shuffled Frog-leaping Algorithm
下载PDF
导出
摘要 针对红外图像的模糊性和非广延性,提出一种基于模糊Tsallis熵的快速阈值分割方法。先用模糊隶属度函数把图像灰度直方图转换到模糊域,分别定义图像背景与目标的模糊Tsallis熵,并根据不可加熵的伪叠加原理求出图像总熵。在参数寻优过程中,提出一种基于Logistic映射的混沌蛙跳优化算法,根据最大熵原理对模糊隶属度函数进行参数优化,进而得到图像的最佳分割阈值。与典型的阈值法进行对比试验,结果证实了该方法的有效性和鲁棒性。 In view of the fuzziness and non-extensiveness of infrared image,a fast threshold segmentation method based on fuzzy Tsallis entropy was proposed.Firstly,the histogram of image was transformed into fuzzy domain by fuzzy membership functions,then the fuzzy Tsallis entropies of background and object were defined,and thus the total entropy of image was obtained according to the pseudo additivity rule of non-extensiveness entropy.In the process of parameters optimization,a kind of chaos shuffled frog-leaping algorithm based on logistic mapping was proposed.The parameters of fuzzy member functions were optimized according to the maximum entropy principle,and then the optimal threshold of image was obtained.Compared with typical threshold segmentation methods by experiment,the presented method was verified to be efficient and robust.
出处 《安徽农业科学》 CAS 2012年第7期4393-4395,4398,共4页 Journal of Anhui Agricultural Sciences
关键词 红外目标分割 模糊Tsallis熵 混沌蛙跳算法 最大熵原则 Infrared object segmentation Fuzzy Tsallis entropy Chaos shuffled frog-leaping algorithm Maximum entropy principle
  • 相关文献

参考文献11

  • 1LI J F,GONG W G,LI W H,et al.Robust pedestrian detection in thermal infrared imagery using the wavelet transform[J].Infrared Physics & Technology,2010,53(4):267-273.
  • 2SEZGIN M,SANKUR B.Survey over image thresholding techniques and quantitative performance evaluation[J].Journal of Electronic Imaging,2004,13(1):146-168.
  • 3张坤华,王敬儒,张启衡.复杂背景下扩展目标的分割算法研究[J].红外与毫米波学报,2002,21(3):233-237. 被引量:39
  • 4SAHOO P K,ARORA G.Image thresholding using two-dimensional TsallisHavrda-Charvát entropy[J].Pattern Recognition Letters,2006,27(6):520-528.
  • 5聂方彦,高潮,郭永彩.基于模糊Havrda-Charvát熵与混沌PSO算法的红外人体图像分割[J].计算机辅助设计与图形学学报,2010,22(1):129-135. 被引量:3
  • 6骆剑平,李霞,陈泯融.混合蛙跳算法的Markov模型及其收敛性分析[J].电子学报,2010,38(12):2875-2880. 被引量:42
  • 7WANG N,LI X,CHEN X H.Fast three-dimensional Otsu thresholding with shuffled frog-leaping algorithm[J].Pattern Recognition Letters,2010,31:1809-1815.
  • 8WANG Y J,ZHANG J S.Global optimization by an improved differential evolutionary algorithm[J].Applied Mathematics and Computation,2007,188(1):669-680.
  • 9OTSU N.A threshold selection method from gray-level histograms[J].IEEE Trans Systems Man Cybemet,1979,9(1):62-66.
  • 10TAO W B,JIN H,LIU L.Object segmentation using ant colony optimization algorithm and fuzzy entropy[J].Pattern Recognition Letters,2007,28:788-796.

二级参考文献37

  • 1邢延,张天序.复杂背景下基于知识的目标识别算法研究[J].模式识别与人工智能,1995,8(3):237-242. 被引量:5
  • 2Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[J].Journal of Electronic Imaging, 2004, 13(1) : 146-165.
  • 3Fang Y J, Yamada K, Ninomiya Y N, et al. A shape independent method for pedestrian detection with far-infrared images [J].IEEE Transactions on Vehicular Technology,2004, 53(6): 1679-1697.
  • 4KapurJ N, Sahoo P K, Wong A K C. A new method for gray level picture thresholding using the entropy of the histogram [J]. Computer Vision, Graphics, and Image Processing, 1985, 29(3): 273-285.
  • 5Pavegid N, Ribarid S. Gray level thresholding using the Havrda and Charvat entropy [C] //Proceedings of the 10th Mediterranean Electrotechnical Conference, Lemesos, 2000: 631-634.
  • 6Cheng H D, Chen J R, Li J G. Threshold selection based on fuzzy c-partition entropy approach [J]. Pattern Recognition, 1998, 31(7): 857-870.
  • 7Kennedy J, Eberhart R. Particle swarm optimization [C] // Proceedings of the IEEE International Conference on Neural Networks, Perth, 1995:1942-1948.
  • 8Collet P, Eckmann J P. Iterated maps on the interval as dynamical systems [M]. Boston: Birkhauser, 1980.
  • 9Murthy C A, Pal S K. Histogram thresholding by minimizing graylevel fuzziness [J]. Information Sciences, 1992, 60(1/2) : 107-1:35.
  • 10Havrda J, Charvat F. Quantification method of classification processes: concept of structural a-entropy [J]. Kybernetika Cislo, 1967, 3(1): 30-35.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部