期刊文献+

广义潮流计算 被引量:1

Generalized Power Flow
下载PDF
导出
摘要 本文研究了广义潮流算法。该算法将各种类型的节点引入潮流计算,并将线路的有功功率给定及无功功率给定作为潮流平衡方程。进而研究了广义牛顿一拉夫逊潮流算法及广义快速分解潮流算法,对IEEE14节点及30节点系统进行了计算,得到了较好的结果。 Generalized Newton-Raphson and Generalized fast decoupled power flow methods are presented in this paper. There are four variables at a bus, P,Q,V,0. In common power flow calculation, two of the bus variables are control variables, and there are only three types of buses, that is, PQ bus, PV bus and slack bus. But in generalized power flow calculation, control variables of a bus can be any combinations of the four bus variables P>Q>V,θ, so the types of buses are generalized, the number of possible combinations of the four bus variables is fifteen, and a bus at which none of the tour bus variables is control variable is also a type of bus, so the total number of bus types is sixteen. And in generalized power flow calculation, real and/or reactive power flows of-transmission lines can be set to be control variables, that is, real and/or reactive power flows of some lines can be specified, and the specified line real and/or reactive power flows are used as power flow equilibrium equations. Generalized Newton-Raphson and generalized fast decoupled power flow methods are developed upon the above principles. The solvability of generalized power flow calculation is also studied. Numerical results on IEEE 14-bus and IEEE 30-bus systems are given.
出处 《中国电机工程学报》 EI CSCD 北大核心 1990年第6期63-67,共5页 Proceedings of the CSEE
  • 相关文献

参考文献1

  • 1王鲁,计算机在线应用学术会议论文集.下,1988年

同被引文献17

  • 1郭庆来,孙宏斌,张伯明,李钦,刘崇茹,李尹,杨志新,王小英,李海峰.江苏电网AVC主站系统的研究和实现[J].电力系统自动化,2004,28(22):83-87. 被引量:97
  • 2邱家驹,韩祯祥,江晓东.潮流计算中的PI_f节点[J].中国电机工程学报,1995,15(5):323-327. 被引量:23
  • 3郭庆来,孙宏斌,张伯明,吴文传,李钦.协调二级电压控制的研究[J].电力系统自动化,2005,29(23):19-24. 被引量:81
  • 4罗春雷,孙洪波,徐国禹.含PQV节点的潮流计算在UPFC中的应用[J].电力系统自动化,1997,21(4):34-36. 被引量:10
  • 5Monticelli A, Garcia A, Saavedra O R. Fast decoupled load flow: hypothesis, derivations, and testing[J]. IEEE Trans. on Power Systems, 1990, PWRS-5(4): 1425-1431.
  • 6Stott B, Alsac O. Fast decoupled load flow[J]. IEEE Trans. on Power Apparatus and Systems, 1974, PAS-93(3): 859-869.
  • 7Tinney W F, Hart C E. Power flow solution by Newton's method[J]. IEEE Trans. on Power Apparatus and Systems, 1967, PAS-86(11): 1449-1460.
  • 8Behnam G K. Fast decoupled load flow: the hybrid model[J]. IEEE Trans. on Power Systems, 1989, PWRS-4(2): 734-742.
  • 9Van Amerongen R A M. A general-purpose version of the fast deeoupled load flow[J]. IEEE Trans. on Power Systems, 1989, PWRS-4(2): 760-770.
  • 10Wu F F. Theoretical study of the convergence of the fast decoupled load flow[J]. IEEE Trans. on Power Apparatus and Systems, 1977, PAS-96(1): 268-275.

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部