期刊文献+

Generalized Cauchy Matrix Approach for Lattice Boussinesq-Type Equations 被引量:3

Generalized Cauchy Matrix Approach for Lattice Boussinesq-Type Equations
原文传递
导出
摘要 The authors generalize the Cauchy matrix approach to get exact solutions to the lattice Boussinesq-type equations:lattice Boussinesq equation,lattice modified Boussinesq equation and lattice Schwarzian Boussinesq equation.Some kinds of solutions including soliton solutions,Jordan block solutions and mixed solutions are obtained.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第2期259-270,共12页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (No.11071157) the Shanghai Leading Academic Discipline Project (No.J50101) the Postgraduate Innovation Foundation of Shanghai University (No.SHUCX111027)
关键词 Lattice Boussinesq-type equations Generalized Cauchy matrixapproach Exact solutions Boussinesq型方程 Cauchy 矩阵方法 Boussinesq方程 Schwarz 广义 晶格 精确解
  • 相关文献

参考文献29

  • 1Ablowitz, M. J. and Ladik, F. J., A nonlinear difference scheme and inverse scattering, Stud. Appl. Math., 55, 1976, 213-229.
  • 2Ablowitz, M. J. and Ladik, F. J., On the solution of a class of nonlinear partial difference equations, Stud. Appl. Math., 57, 1977, 1-12.
  • 3Hirota, R., Nonlinear partial difference equations I, J. Phys. Soc. Japan, 43, 1977, 1424-1433.
  • 4Hirota, R., Nonlinear partial difference equations II, J. Phys. Soc. Japan, 43, 1977, 2074-2078.
  • 5Hirota, R., Nonlinear partial difference equations III, J. Phys. Soc. Japan, 43, 1977, 2079-2086.
  • 6Hirota, R., Nonlinear partial difference equations. IV, J. Phys. Soc. Japan, 45, 1978,321-332.
  • 7Hirota, R., Nonlinear partial difference equations. V, J. Phys. Soc. Japan, 46, 1979, 312-319.
  • 8Nijhoff, F. W., Quispel, G. R. W. and Capel, H. W., Direct linearization of nonlinear difference-difference equations, Phys. Lett. A, 97, 1983, 125-128.
  • 9Quispel, G. R. W., Nijhoff, F. W., Capel, H. W. and van der Linden, J., Linear integral equations and nonlinear difference-difference equations, Physica A, 125, 1984, 344-380.
  • 10Nijhoff, F. W., Papageorgiou, V. G., Capel, H. W. and Quispel G. R. W., The lattice Gelfand-Dikii hierarchy, Inverse Problem, 8, 1992, 597-62l.

同被引文献22

  • 1陈卫强.全力推进“114”行动 建设“健康杭州”[J].杭州,2012(2):30-30. 被引量:1
  • 2Harold A. Linstonea, Author Vitae, Murray Turoftb. Delphi : A brief look backward and forward [ J ]. Technol Forecast Soc Change, 2011, 78 (9): 1712-1719.
  • 3Johann Steurer. The Delphi method: an efficient procedure to generate knowledge [J]. Skeletal Radiol, 2011, 40 (8): 959 - 961.
  • 4He Ying, Tao Qiu - Gong, Yang Yan- Fang. The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method [J]. Chin Phys B, 2012, 21 (10) : 100303 - 100306.
  • 5李海燕.医学科技人才评价指标体系及综合评价方法研究[D].广州:南方医科大学,2007.
  • 6Dilip V Jeste, Monika Ardelt, Dan Blazer, et al. Expert Consensus on Characteristics of Wisdom: A Delphi Method Study [J]. Gerontologist, 2010, 50 (5):668-680.
  • 7Lilja KK, Laakso K, Palomki J. Using the Delphi method [J]. Technology Management in the Energy Smart World (PICMET) , 2011, 4 (11): 1-10.
  • 8王艳红,王世勋.一类KdV方程的精确解[J].信阳师范学院学报(自然科学版),2010,23(4):492-494. 被引量:5
  • 9曹瑞.带色散项的高阶非线性Schrdinger方程的精确解[J].纯粹数学与应用数学,2012,28(1):92-98. 被引量:3
  • 10王艳红,刘新乐,姬鹏斌.广义KdV方程与广义Burgers方程的精确解[J].大学数学,2012,28(1):111-113. 被引量:5

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部