期刊文献+

Shape Analysis of Bounded Traveling Wave Solutions and Solution to the Generalized Whitham-Broer-Kaup Equation with Dissipation Terms

Shape Analysis of Bounded Traveling Wave Solutions and Solution to the Generalized Whitham-Broer-Kaup Equation with Dissipation Terms
原文传递
导出
摘要 This paper deals with the problem of the bounded traveling wave solutions' shape and the solution to the generalized Whitham-Broer-Kaup equation with the dissipation terms which can be called WBK equation for short.The authors employ the theory and method of planar dynamical systems to make comprehensive qualitative analyses to the above equation satisfied by the horizontal velocity component u(ξ) in the traveling wave solution (u(ξ),H(ξ)),and then give its global phase portraits.The authors obtain the existent conditions and the number of the solutions by using the relations between the components u(ξ) and H(ξ) in the solutions.The authors study the dissipation effect on the solutions,find out a critical value r*,and prove that the traveling wave solution (u(ξ),H(ξ)) appears as a kink profile solitary wave if the dissipation effect is greater,i.e.,|r| ≥ r*,while it appears as a damped oscillatory wave if the dissipation effect is smaller,i.e.,|r| < r*.Two solitary wave solutions to the WBK equation without dissipation effect is also obtained.Based on the above discussion and according to the evolution relations of orbits corresponding to the component u(ξ) in the global phase portraits,the authors obtain all approximate damped oscillatory solutions (u(ξ),H(ξ)) under various conditions by using the undetermined coefficients method.Finally,the error between the approximate damped oscillatory solution and the exact solution is an infinitesimal decreasing exponentially.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第2期281-308,共28页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (No.11071164) the Natural Science Foundation of Shanghai (No.10ZR1420800) the Shanghai Leading Academic Discipline Project (No.S30501)
关键词 Generalized Whitham-Broer-Kaup equation Shape analysis Solitarywave solution Damped oscillatory solution Error estimate Broer-Kaup方程 形状分析 行波解 广义 有界 耗散 阻尼振荡波 散热效果
  • 相关文献

参考文献7

二级参考文献100

  • 1V.N. Serkin and A. Hasegawa, Phys. Rev. Lett. 85 (2000) 4502.
  • 2V.I. Kruglov, A.C. Peacock, and J.D. Harvey, Phys. Rev. Lett. 90 (2003) 113902.
  • 3J.M. Dudley, C. Finot, D.J. Richardson, and G. Millot, Nature Phys. 3 (2007) 597.
  • 4C.Q. Dai, Y.Y. Wang, and C.J. Yan, Opt. Commun. 283 (2010) 1489.
  • 5C.Q. Dai, S.Q. Zhu, and J.F. Zhang, Opt. Commun. 283 (2010) 3784.
  • 6C.Q. Dai, Y.Y. Wang, and J.F. Zhang, Opt. Express 35 (2010) 17548.
  • 7L.H. Zhao and C.Q. Dai, Eur. Phys. J. D 58 (2010) 327.
  • 8S.A. Ponomarenko and G.P. Agrawal, Opt. Lett. 32 (2007) 1659.
  • 9C.Q. Dai, Y.Y. Wang, and J.F. Zhang, Opt. Lett. 35 (2010) 2651.
  • 10C.Q. Dai, Y.J. Xu, R.P. Chen, and S.Q. Zhu, Eur. Phys. J. D 59 (2010) 457.

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部