摘要
为了提高短期风电功率预测的精度,提出一种基于Markov链理论的预测算法。该算法直接对风电功率数据进行分析,划分了四种状态空间,并根据状态空间数和建模数据量的不同分别建立一阶和二阶Markov链模型。采用新误差公式NRMSE,给出不同状态空间数和建模数据量下的一阶、二阶Markov链模型预测性能比较结果。进一步给出在选取相同状态空间数、相同建模数据量的情况下,一阶和二阶Markov链模型的灵敏度分析。经实例验证,该算法能有效地提高单点值预测精度,并且给出了与预测值相关的概率分布结果。
A forecasting algorithm based on Markov chain theory is proposed to improve the precision of short-term wind power forecasting. The data of the wind power are analyzed directly and four kinds of state-spaces are formed. The order- 1 and order-2 models are built according to the number of state-space and the differences of modeling quantities. The comparison results between order-I and order-2 Markov models under different numbers of state-spaces and modeling data are presented through the new error formulaNRMSE. And then sensitivity analyses of order-1 and order-2 Markov models are provided based on the same number of state-spaces and modeling quantity. Experimental results show that the proposed method can improve the prediction accuracy, and it provides probability distribution results associated with prediction value.
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2012年第6期6-10,16,共6页
Power System Protection and Control