期刊文献+

基于高阶Markov链模型的风电功率预测性能分析 被引量:13

Analysis of the wind power forecasting performance based on high-order Markov chain models
下载PDF
导出
摘要 为了提高短期风电功率预测的精度,提出一种基于Markov链理论的预测算法。该算法直接对风电功率数据进行分析,划分了四种状态空间,并根据状态空间数和建模数据量的不同分别建立一阶和二阶Markov链模型。采用新误差公式NRMSE,给出不同状态空间数和建模数据量下的一阶、二阶Markov链模型预测性能比较结果。进一步给出在选取相同状态空间数、相同建模数据量的情况下,一阶和二阶Markov链模型的灵敏度分析。经实例验证,该算法能有效地提高单点值预测精度,并且给出了与预测值相关的概率分布结果。 A forecasting algorithm based on Markov chain theory is proposed to improve the precision of short-term wind power forecasting. The data of the wind power are analyzed directly and four kinds of state-spaces are formed. The order- 1 and order-2 models are built according to the number of state-space and the differences of modeling quantities. The comparison results between order-I and order-2 Markov models under different numbers of state-spaces and modeling data are presented through the new error formulaNRMSE. And then sensitivity analyses of order-1 and order-2 Markov models are provided based on the same number of state-spaces and modeling quantity. Experimental results show that the proposed method can improve the prediction accuracy, and it provides probability distribution results associated with prediction value.
机构地区 哈尔滨理工大学
出处 《电力系统保护与控制》 EI CSCD 北大核心 2012年第6期6-10,16,共6页 Power System Protection and Control
关键词 风电功率预测 MARKOV链 多状态空间 高阶模型 wind power prediction Markov chain multi-state space high-order model
  • 相关文献

参考文献14

  • 1Bathurst GN, Weatherhill J, Strbac G. Trading wind generation in short-term energy markets[J]. IEEE Trans on Power Systems, 2002, 17(3): 782 - 789.
  • 2Carpentiero V, Langella R, Manco T, et al. A Markovian approach to size a hybrid wind-diesel stand alone system[C] // 10th International Conference on Probabilistic Methods Applied to Power Systems, MaggioagUez, Puerto Rico, May 2008.
  • 3MonteiroC, BessaR, Miranda V, etal. Wind power forecasting: state-of-the-art 2009[R]. Report ANL/DIS- 10-1, Argonne National Laboratory, November 2009.
  • 4Kariniotakis G, PinsonP, SiebertN, et al. State of the art in short-term prediction of wind power-From an offshore perspective[C] // Ocean Energy Conference: Offshore Wind Energy, Marine Currents and Waves, Brest, France, 2004.
  • 5Pinson P, Juban J, Kariniotakis G. On the quality and value of probabilistic forecasts of wind generation[C]// PMAPS 2006, IEEE Conference, "Probabilistic Methods Applied to Power Systems", Stockholm, Sweden, June 2006.
  • 6Pinson P. Estimation of the uncertainty in wind power forecasting[D]. Ecole des Mines de Paris, Paris, France, 2006: 23-85.
  • 7周晖,方江晓,黄梅.风电功率GARCH预测模型的应用研究[J].电力系统保护与控制,2011,39(5):108-114. 被引量:18
  • 8吴栋梁,王扬,郭创新,杨健.基于改进GMDH网络的风电场短期风速预测[J].电力系统保护与控制,2011,39(2):88-93. 被引量:19
  • 9郭奎麟,谭伦农,黄虎.基于小波包的马尔科夫方法在短期负荷预测中的应用[J].电力系统保护与控制,2011,39(6):66-70. 被引量:12
  • 10Shamshad A, Bawadi M A. First and second order Markov chain models for synthetic generation of wind speed timeseries[J]. Energy, 2005, 30(5): 693-708.

二级参考文献49

共引文献45

同被引文献124

  • 1金宁德,李伟波.非线性时间序列的符号化分析方法研究[J].动力学与控制学报,2004,2(3):54-59. 被引量:13
  • 2祝志慧,孙云莲,季宇.基于经验模式分解和最小二乘支持向量机的短期负荷预测[J].继电器,2007,35(8):37-40. 被引量:14
  • 3Wu Lei, Shahidehpour Mohammad, Li Tao. Stochastic security-constrained unit commitment[J]. IEEE Trans on Power Systems, 2007, 22(2): 800-811.
  • 4Ruiz P A, Philbrick C R, Zak E, et al. Uncertainty management in the unit commitment problem[J]. IEEE Trans on Power Systems, 2009, 24(2): 642-651.
  • 5Bouffard F, Galiana F D. Stochastic security for operations planning with significant wind power generation[J]. IEEE Trans on Power Systems, 2008, 23(2): 306-316.
  • 6Wang Jianhui, Shahidehpour Mohammad, Li Zuyi. Security-constrained unit commitment with volatile wind power generation[J]. IEEE Trans on Power Systems,2008,23(3):1319-1327.
  • 7ULRICH F, MATI'HIAS L, MONNICH K, et al. A statistical analysis of the reduction of the wind power prediction error by spatial smoothing effects[J]. Journal of Wind Engineering andIndustrial Aerodynamics, 2002, 90(3): 231-246.
  • 8HSU L C, WANG C H. Forecasting integrated circuit output using muitivariate grey model and grey relational analysis [J]. Expert Systems with Applications, 2009, 36(2): 1403-1409.
  • 9E1-FOULY T H M, EL-SAADANY E F, SALAMA M M A. Improved grey predictor rolling models for wind power p~ediction [J]. IET Generation Transmission & Distribution, 2007, 6(1): 928- 937.
  • 10ALBADI M H, E1-SAADANY E F. New method for estimating CF of pitch-regulated wind turbines [J]. Electric Power Systems Research, 2010, 80(9): 1182-1188.

引证文献13

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部