摘要
An authentic mixture of polychlorinated biphenyls was measured using a short wide-bore capillary column for the group separation of major components present in an actual sample of Kanechlor. The limits of detection were improved by ca. 2 fold in comparison with those obtained using a conventional capillary column, since the retention time was reduced and the amount of analytes introduced into the mass spectrometer per unit time could be increased. On the other hand, surface-water and sediment samples containing polycyclic aromatic hydrocarbons (PAHs) were collected from the river located in the vicinity of a waste water treatment plant. Even acenaphthylene, a minor component of the mixture could be measured for the sediment sample, and the concentra- tions were determined for several heavy PAHs. As demonstrated, a technique involving laser multiphoton ionization/time-of-flight mass spectrometry was useful as a sensitive and selective analytical tool for the trace analysis of persistent organic pollutants in an environmental sample.
An authentic mixture of polychlorinated biphenyls was measured using a short wide-bore capillary column for the group separation of major components present in an actual sample of Kanechlor. The limits of detection were improved by ca. 2 fold in comparison with those obtained using a conventional capillary column, since the retention time was reduced and the amount of analytes introduced into the mass spectrometer per unit time could be increased. On the other hand, surface-water and sediment samples containing polycyclic aromatic hydrocarbons (PAHs) were collected from the river located in the vicinity of a waste water treatment plant. Even acenaphthylene, a minor component of the mixture could be measured for the sediment sample, and the concentra- tions were determined for several heavy PAHs. As demonstrated, a technique involving laser multiphoton ionization/time-of-flight mass spectrometry was useful as a sensitive and selective analytical tool for the trace analysis of persistent organic pollutants in an environmental sample.