摘要
Proteorhodopsin (PR) is a recently discovered protein involved in the utilization of light energy. Several studies have shown that PR-containing microorganisms are widespread and compose a large proportion of the biomass in marine ecosystems. A better understanding of the ecological role of PR will help clarify the effect of the global flow of energy and the carbon cycle on marine communities. In this study, a bioinformatical database of PR codon sequences, the Global Distribution Database of Proteorhodopsin (GDDP), as a tool for analyzing the diversity and distribution of PR-containing microorgan- isms in marine environments throughout the world was designed. The community structure of PR microorganisms were also compared using PCR assays and UniFrac analyses of 12 samples collected from three water layers (0, 75, and 200 m) at four representative sites in the Pacific, Atlantic, and Indian Oceans. The results indicate that PR- containing microorganisms can be grouped into two distribution types: widespread and location-specific. Representative cases of the former include SARll-PR and HOT2C01-PR. Interestingly, PR communities cluster by geographic locale but not by water depth.
Proteorhodopsin (PR) is a recently discovered protein involved in the utilization of light energy. Several studies have shown that PR-containing microorganisms are widespread and compose a large proportion of the biomass in marine ecosystems. A better understanding of the ecological role of PR will help clarify the effect of the global flow of energy and the carbon cycle on marine communities. In this study, a bioinformatical database of PR codon sequences, the Global Distribution Database of Proteorhodopsin (GDDP), as a tool for analyzing the diversity and distribution of PR-containing microorgan- isms in marine environments throughout the world was designed. The community structure of PR microorganisms were also compared using PCR assays and UniFrac analyses of 12 samples collected from three water layers (0, 75, and 200 m) at four representative sites in the Pacific, Atlantic, and Indian Oceans. The results indicate that PR- containing microorganisms can be grouped into two distribution types: widespread and location-specific. Representative cases of the former include SARll-PR and HOT2C01-PR. Interestingly, PR communities cluster by geographic locale but not by water depth.