摘要
中文书目机器自动标引是数字图书馆建设中亟待解决的关键问题之一。本文试图将条件随机场(CRFs)序列标注机器学习算法引入到关键词抽取中,建立面向图书内容、基于字角色标注的中文书目关键词标引模型。将图书内容转化为字序列,进而提出构建关键词角色空间模型和综合利用字序列上下文特征的设计思路。通过实验,从题名和内容提要中分别自动抽取关键词,论证该模型的合理性和实用性。
Automatic indexing by computers for Chinese bibliography has become one of the most critical problems which should be solved immediately in digital library construction. This paper tries to introduce Conditional Random Fields (CFRs) algorithm into the keyword extraction of Chinese bibliography, and builds the model which faces book contents based on the word roles annotation. The model turns the book contents into sequences of words. Based on that, an idea which combines word roles space model building with context features of word sequence comprehensive u- tilization has been proposed. Moreover, the paper also verifies the rationality and practicality of the model by showing the experiment of automatically extracting keywords from titles and abstracts. 6 figs. 3 tabs. 23 refs.
出处
《中国图书馆学报》
CSSCI
北大核心
2012年第2期38-49,共12页
Journal of Library Science in China
基金
国家社科基金项目“面向语义网本体的知识管理研究”(编号:09CTQ010)的研究成果之一
关键词
中文书目
关键词标引
字角色
序列标注
自动标引
Chinese bibliography. Keywords indexing. Word roles. Sequence annotation. Automatic indexing