期刊文献+

基于模糊支持向量机的变压器故障诊断 被引量:13

Research of transformer fault diagnosis based on fuzzy support vector machines
下载PDF
导出
摘要 针对支持向量机对训练样本内的噪声和孤立点比较敏感,影响了支持向量机分类性能的弱点,利用模糊支持向量机的学习方法,构建了变压器故障诊断模型.采取一种基于二叉树的多分类方法,使用模糊C均值聚类算法求取模糊支持向量机的模糊隶属度,采用径向基核函数,并利用遗传算法对模糊支持向量机的参数进行寻优.实验结果表明,基于二叉数的模糊支持向量机模型相比BP神经网络、支持向量机有更高的诊断准确率,基于二叉树模糊支持向量机的变压器故障诊断方法是可行的. As the traditional support vector machines(SVM) is particularly sensitive to noise and outliers in the training samples, transformer fault diagnosis model is built based on fuzzy support vector machines(FSVM). It selects binary tree classification algorithm for multi-class classification. The membership value of the FSVM is obtained by fuzzy C-means clustering algorithm. The radial kernel is selected. Parameters of the FSVM model are optimized with genetic algorithm. A mass of fault samples are analyzed and results are compared with those obtained by the methods of BPNN and SVM, which shows that the proposed model is more effective and accurate, which proves the given method of transformer fault diagnosis based on binary tree fuzzy support vector machines is feasible.
作者 肖燕彩 张清
出处 《北京交通大学学报》 CAS CSCD 北大核心 2012年第1期117-121,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 中央高校基本科研业务费专项资金资助(2011JBM092)
关键词 模糊支持向量机 二叉树 故障诊断 模糊C均值聚类算法 遗传优化 变压器 fuzzy support vector machines binary tree fault diagnosis fuzzy C-means clustering algorithm genetic algorithm transformer
  • 相关文献

参考文献6

二级参考文献67

共引文献123

同被引文献136

引证文献13

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部