期刊文献+

一种半球面方位关系表示模型

A Representation Model of Direction Relations on Hemispherical Surface
原文传递
导出
摘要 提出一种表达半球面方位关系的模型——最小边界扇区模型(MBS),将半球面上区域自上而下正投影到底面,且根据参考对象在底面的投影位置,将投影面划分为12个原子区域.根据研究区域占原子区域的个数等信息来刻画区域间方位关系,不但可表达出左右等方位关系,还可通过区域上点到中心的距离关系定性表达半球面上区域的高度关系等信息.给出MBS模型中可能存在的1932种情形.为进一步研究MBS模型下的推理及复合表的构造,给出此模型下的关系矩阵表示方法,通过此关系矩阵亦可方便推知原半球面上区域间的方位关系. A Minimum Bounding Sector model(MBS) is proposed which represents the direction relationship on hemispherical surface.The model projects the region on the hemispherical surface to the bottom and divides the bottom region into 12 atom areas based on the projection of the region on the hemispherical surface.In this way,the model not only represents the direction relations such as left and right,but also represents the height information qualitatively by means of the distance between the points and the center on the projection plane.And the 1932 cases that exists in the MBS is also represented.As to the further research on reasoning and the composition table,the relational matrix is proposed through which the direction relations between regions on the hemispherical surface are deduced conveniently.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第1期11-15,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.61133011 61170092 60973088 60879149)
关键词 方位关系 半球面 最小边界扇区 Direction Relations Hemispherical Surface Minimum Bounding Sector(MBS)
  • 相关文献

参考文献8

  • 1Goyal R,Egenhofer M J.The Direction-Relation Matrix:A Representation for Directions Relations between Extended Spatial Objects.The Annual Assembly and the Summer Retreat of University Consortium for Geographic Information Science,1997,3:95-102.
  • 2Papadias D,Theodoridis Y.Spatial Relations,Minimum Bounding Rectangles and Spatial Data Structures.International Journal of Geographical Information Science,1997,11(2):111-138.
  • 3苏占新,马云飞,苏赫,赵春山.山区GPS水准的应用探讨[J].城市勘测,2009(5):79-81. 被引量:1
  • 4Clementini E,Billen R.Modeling and Computing Ternary Projective Relations between Regions.IEEE Trans on Knowledge and Data Engineering,2006,18(6):799-814.
  • 5Clementini E.Projective Relations on the Sphere//Proc of the ER Workshops on Advances in Conceptual Modeling:Challenges and Opportunities.Barcelona,Spain,2008:313-322.
  • 6王淼,郝忠孝.三维空间方向关系的定性描述与推理[J].计算机工程,2009,35(15):22-25. 被引量:15
  • 7Du Shihong,Guo Luo,Wang Qiao.A Model for Describing and Composing Direction Relations between Overlapping and Contained Regions.Information Sciences,2008,178(14):2928-2949.
  • 8Liu Weiming,Zhang Xiaotong,Li Sanjiang,et al.Reasoning about Cardinal Directions between Extended Objects.Artificial Intelligence,2010,174(12/13):951-983.

二级参考文献15

  • 1张正禄,邓勇,罗长林,宋玉兵.利用GPS精化区域似大地水准面[J].大地测量与地球动力学,2006,26(4):14-17. 被引量:33
  • 2于小平,杨国东,王凤艳,刘财,张洪波,孟令顺,许惠平,胡婷.GPS高程拟合转换正常高的研究[J].测绘科学,2007,32(2):40-41. 被引量:42
  • 3于小平,杨国东,许惠平,肖锋,赵震宇,刘财,孟令顺.带状区域GPS大地高转换成正常高的研究[J].吉林大学学报(地球科学版),2007,37(1):185-189. 被引量:7
  • 4王琦,郭春喜,程传录.银川市似大地水准面精化[J].测绘技术装备,2007,9(1):23-25. 被引量:1
  • 5雍广穗.GPS拟合高程在基础测绘中的运用[J].测绘与空间地理信息,2007,30(3):139-143. 被引量:9
  • 6Frank A U.Qualitative Spatial Reasoning about Distance and Directions in Geographic Space[J].Journal of Visual Languages and Computing,1992,3(4):343-373.
  • 7Frank A.Qualitative Spatial Reasoning:Cardinal Directions as an Example[J].International Journal of Geographic Information Systems,1996,10(3):269-290.
  • 8Peuquet D,Zhan Cixiang.An Algorithm to Determine the Directional Relationship Between Arbitrarily-shaped Polygons in the Plane[J].Pattern Recognition,1987,20(1):65-74.
  • 9Chang S K.Iconic Indexing by 2-D String[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(3):413-428.
  • 10Papadias D,Sellis T.Qualitative Representation of Spatial Knowledge in Two Dimensional Space[J].VLDB Journal,1994,3(4):479-516.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部