期刊文献+

基于核聚类进化算法的音乐情感模糊计算模型 被引量:2

Music Emotion Fuzzy Computing Model Based on Evolving Kernel Clustering
原文传递
导出
摘要 音乐情感计算涉及到多维度多层次结构的复杂情感表征问题,而情感本身所具有的模糊性、细微性和多样性,使得传统的情感识别方法普遍效率低下且正确率不高.为提高识别精度,首先利用高斯径向基函数进行非线性映射,来分辨、提取并放大更多的细节信息.然后通过深入剖析中国古琴乐曲,从中抽取出影响最大的六个情感特征值,并在非线性映射的基础上,构造一种基于核聚类进化算法的音乐情感模糊计算模型.在此基础上,进一步针对算法中统一设定簇半径阈值的不足,提出基于蚁群算法的规则调整策略,并进行系统实验.实验结果表明,与基于概率统计的Beyes分类方法相比,优化后的模糊计算模型具有较好的识别效果. Music emotion computing is a complex problem of emotion representation,which has multi-level and multi-dimensional structure.Its characteristics of fuzziness,subtleness and diversity result in the inefficiency of traditional methods.In order to improve recognition accuracy,firstly,the non-linear mapping of Gaussian radial basis function is used to identify,extract and magnify more details.Then,six key emotional features are extracted,by analyzing Chinese Guqin music in depth,and the fuzzy classification model for music emotion is constructed based on kernel clustering evolutionary algorithm.Moreover,aiming at the shortcoming of setting uniform cluster radius threshold in algorithm,the corresponding optimization strategy is proposed based on ACO.Finally,the optimized model is compared with Beyes classification model,and the experimental results show that the proposed method is effective.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第1期63-70,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60975076)
关键词 音乐情感识别 古琴减字谱 核聚类 蚁群算法(ACO) 模糊规则 Music Emotion Recognition Guqin Notation Kernel Clustering Ant Colony Optimization(ACO) Fuzzy Rules
  • 相关文献

参考文献10

  • 1Picard R W.Affective Computing.Cambridge,USA:MIT Press,1997.
  • 2Sun Xiaoyu,Tang Yongchuan.Automatic Music Emotion Classification Using a New Classification Algorithm//Proc of the2nd International Symposium on Computational Intelligence and Design.Changsha,China,2009,II:540-542.
  • 3Wang Muyuan,Zhang Naiyao,Zhu Hancheng.User-AdaptiveMusic Emotion Recognition//Proc of the7th International Conference on Signal Processing.Beijing,China,2004,II:1352-1355.
  • 4Li Tao,Ogihara M.Content-Based Music Similarity Search and Emotion Detection//Proc of the IEEE Conference on Acoustics,Speech,and Signal Processing.Jeju Island,Korea,2004,V:705-708.
  • 5Feng Yazhong,Zhuang Yueting,Pan Yunhe.Query Similar Music by Correlation Degree//Proc of the2nd IEEE Pacific Rim Conference on Multimedia.Beijing,China,2001:885-890.
  • 6Liu Tao,Zhu Bin,Sun Shouqian,et al.Music's Affective Computing Model Based on Fuzzy Logic//Proc of the6th World Congress on Intelligent Control and Automation.Dalian,China,2006:9477-9481.
  • 7Liu Tao,Sun Shouqian,Pan Yunhe.Emotional Recognition for Chime Bell Music//Proc of the IEEE International Conference on Systems,Man and Cybernetics.The Hague,Netherlands,2004,I:568-573.
  • 8杨志民,邓乃扬.基于可能性理论的模糊支持向量分类机[J].模式识别与人工智能,2007,20(1):7-14. 被引量:7
  • 9阳爱民,胡运发.一种核模糊分类器的规则生成方法[J].模式识别与人工智能,2006,19(2):196-202. 被引量:2
  • 10吕兰兰,周昌乐.古琴音乐的情感分类及表现力浅析[J].心智与计算,2010,0(4):242-249. 被引量:1

二级参考文献22

  • 1廖胜京.中国五声调式同主音横向综合的理论与实践 [J].星海音乐学院学报,2002(1):43-52. 被引量:6
  • 2李毅波.旋律音程的表现作用[J].艺术教育,2007(1):66-68. 被引量:1
  • 3张文修.模糊数学基础[M].西安:西安交通大学出版社,1995..
  • 4Blake C L, Merz C J. UC1 Repository of Machine Learning Databases Network Document. 1998, ftp://ftp. ics. uci. edu/pub/machine-learning-databases
  • 5Uebele F, Abe S, I,an M S. A Neural Network-Based Fuzzy Classifier. IEEE Trans on Systems, Man, and Cybernetics,1999, 25(2): 353-361
  • 6Shimojima K, FuKuda T, Hasegawa Y, RBF-Fuzzy System with GA Based Unsupervised/Supervlsed Learning Method. In:Proc of the 4th IEEE International Conference on Fuzzy System.Piscataway, USA, 1995, 253-258
  • 7Inoue H, Amei K. Automatic Generstion of Fuzzy Rules Using Hyper Elliptic Cone Membership Functions by Genetic Algorithms. Journal of Intelligent and Fuzzy Systems, 1998, 6(1):65-81
  • 8Ryoke M, Tarnura H, Nakarnori Y. Fuzzy Rule Generation by Hyperellipsoidal Clustering. In.. Proc of the 4th International Conference on Soft Computing. lizuka, Japan, 1996, 1 : 86-89
  • 9Abe S. Dynamic Cluster Generation for a Fuzzy Classifier with Ellipsoidal Regions. IEEE Trans on Systems, Man, and Cybernetics, 1998, 28(6): 869-876
  • 10Hng L, Inoue H, et al. Automatic Generation of Fuzzy Classification Systems Using Hyper-Cone Membership Function, In:Proc of the IEEE International Symposium on Computational Intelligence in Robotics and Automation. Kobe, Japan, 2003, Ⅱ:728-731

共引文献7

同被引文献41

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部