期刊文献+

基于查询聚类的排序学习算法 被引量:6

Learning to Rank Based on Query Clustering
原文传递
导出
摘要 排序学习算法作为信息检索与机器学习的一个交叉领域,越来越受到人们的重视.然而,几乎没有排序学习算法考虑到查询差异的存在.文中查询被建模为多元高斯分布,KL距离被用来度量查询之间的距离,利用谱聚类方法对查询进行聚类,为每个聚类类别训练一个排序函数.实验结果表明经过聚类得到的排序函数需要较少的训练样例,但是它的性能却和没有经过聚类得到的排序函数具有可比性,甚至优于后者. Learning to rank,the interdisciplinary field of information retrieval and machine learning,draws increasing attention and lots of models are designed to optimize the ranking functions.However,few methods take the differences among the queries into account.In this paper,the queries are modeled as multivariate Gaussian distributions and Kullback-Leibler divergence is adopted as distance measure.The spectral clustering is applied to cluster the queries into several clusters and a ranking function is learned for each cluster.The experimental results show that the ranking functions with clustering are trained with less data,but are comparable to or even outperform the ones without clustering.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第1期118-123,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60736044 60903107 61073071) 高等学校博士学科点专项科研基金(No.20090002120005)资助项目
关键词 排序学习 排序函数 谱聚类 Learning to Rank Ranking Function Spectral Clustering
  • 相关文献

参考文献17

  • 1Duh K,Kirchhoff K.Learning to Rank with Partially-Labeled Data//Proc of the31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Singapore,Singapore,2008:251-258.
  • 2Broder A.A Taxonomy of Web Search.ACM SIGIR Forum,2002,36(2):3-10.
  • 3Rose D E,Levinson D.Understanding User Goals in Web Search//Proc of the13th International Conference on World Wide Web.New York,USA,2004:13-19.
  • 4Gravano L,Hatzivassiloglou V,Lichtenstein R.Categorizing Web Queries According to Geographical Locality//Proc of the20th International Conference on Information and Knowledge Management.New Orleans,USA,2003:325-333.
  • 5Shen Dou,Sun Jiantao,Yang Qiang,et al.Building Bridges for Web Query Classification//Proc of the29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Seattle,USA,2006:131-138.
  • 6Liu Yiqun,Zhang Min,Ru Liyun,et al.Automatic Query Type Identification Based on Click through Information//Proc of the3rd Asia Information Retrieval Symposium.Singapore,Singapore,2006:593-600.
  • 7Lee U,Liu Zhenyu,Cho J.Automatic Identification of User Goals in Web Search//Proc of the14th International Conference on World Wide Web.Chiba,Japan,2005:391-400.
  • 8Craswell N,Hawking D,Robertson S.Effective Site Finding Using Link Anchor Information//Proc of the24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New Orleans,USA,2001:250-257.
  • 9Westerveld T,Kraaij W,Hiemstra D.Retrieving Web Pages Using Content,Links,URLs and Anchors//Proc of the10th Text Retrieval Conference.Gaithersburg,USA,2001:663-672.
  • 10Kang I,Kim G.Query Type Classification for Web Document Retrieval//Proc of the26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Toronto,Canada,2003:64-71.

同被引文献81

  • 1张娜,张化祥.基于超链接和内容相关度的检索算法[J].计算机应用,2006,26(5):1171-1173. 被引量:6
  • 2白曦,吕晓枫,孙吉贵.基于加权向量空间模型的网络搜索[J].计算机应用研究,2007,24(2):51-53. 被引量:7
  • 3吴佳金,杨志豪,林原,等.基于改进Pairwise损失函数的排序学习方法[C]//第六届全国信息检索学术会议论文集,2010.
  • 4马帅,李佳,刘旭东,等.图查询:社会计算时代的新型搜索[J].中国计算机学会通讯,2012,8(11):26-32.
  • 5Li G,Ooi BC,Feng J,et al.Ease:An effective 3-in-1 keyword search method for unstructured, semi-slructured and structured data[ A]. Proceedings of the ACM SIGMOD International Con- ference on Management of Data [ C ]. New York: Association for Computing Machiner, 2008.3 - 914.
  • 6Aggarwal CC, Wang H. Managing and Mining Graph Data [ M ]. New York: Springer- Verlag, 2010.249 - 274.
  • 7Zhong Ming, Liu Mengchi. Ranking the answer trees of graph search by both structure and content [ A ]. Proceedings of 1st Joint International Workshop on Entity-Oriented and Semantic Search, JIWES' 12- Co-localed with the 35th ACM SIGIR Con- ference[ C ]. New York: Association for Computing Machiner, 2012.344 - 350.
  • 8Bhalotia G,Nakhe C,Hulged A,et al. Keyword searching and browsing in databases using BANKS [ A ]. Proceedings of the International Conference on Data Engineering[ C]. Washington: [FEE Computer Society,2002.431- 440.
  • 9Ding Bolin, Yu Jeffrey Xu, Wang Shan, et al. Finding top-krain-cost connected trees in databases[A]. Proceedings of the International Conference on Data Engineering[C ]. New Jersey: WEE Computer Society, 2009.836 - 845.
  • 10Golenberg K, Kimeffeld B, Sagiv Y. Keyword proximity search in complex data graphs[ A]. Proceedings of the ACM SIGMOD International Conference on Management of Data [ C]. New York: Association for Computing Machiner,2008.927 - 940.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部