期刊文献+

机械力对人骶韧带成纤维细胞形态及合成功能的调节 被引量:1

Regulation of morphology and synthesis function by mechanical stretch in human uterosacral ligament fibroblasts
原文传递
导出
摘要 目的探究机械力对非盆底器官脱垂(POP)患者骶韧带成纤维细胞形态及整合素β1(integrinβ1)、踝蛋白(talin)、细胞外基质(ECM)mRNA表达的调节。方法选取2009年10月至2010年9月河北医科大学二院非POP患者15例,进行骶韧带成纤维细胞的原代培养,并鉴定。取3~4代的骶韧带成纤维细胞加载力,加载时间分为0(对照组)、4、12、24h,提取RNA,荧光实时定量PCR测定机械力对integrinβ1、talin、Ⅰ、Ⅲ型胶原、基质金属蛋白酶-1(MMP-1)mRNA表达量的影响。结果应力刺激下,细胞的形态和伸展方向发生改变。integrinβ1mR-NA4、15、24h表达量(18.822±5.545,32.527±2.212,40.357±5.140)较0h(1.003±0.064)升高,差异有统计学意义(P=0.000)。talin mRNA4、15、24h表达量(109.804±34.875,106.574±35.477,863.206±144.361)较0h(1.009±0.468)升高,差异有统计学意义(P=0.000)。Ⅰ型胶原mRNA4、15h表达量(0.753±0.192,0.701±0.023)较0h(1.000±0.129)下降,差异有统计学意义(P=0.008),但在24h后回升至1.113±0.049。Ⅲ型胶原mRNA4、15、24h表达量(4.792±1.612,6.146±1.169,5.021±0.940)较0h(1.001±0.249)升高,差异有统计学意义(P=0.002)。MMP-1mRNA4、15、24h表达量(6.233±1.690,23.173±9.251,20.133±7.100)较0h(1.000±0.100)升高,差异有统计学意义(P=0.005)。结论细胞的形态、伸展方向和合成功能受机械力的调节,基质重塑可能是细胞对机械力的适应性改变。 Objective To investigate the regulation of mechanical stretch on the morphology and integrinβ1 , talin and ex- tracellular matrix mRNA expression of fibroblasts derived from human uterosacral ligament without pelvic organ prolapse. Methods 15 Patients without pelvic organ prolapse in the Second Hospital of Hebei Medical University between Oct. 2009 and Sep. 2010 were recruited in this study. Fibroblasts of uterosacral ligament were cultured and identified. Fibro- blasts of 3 - 4 generations was stretched by for 0 (control group) ,4,15,24 hours. Total RNA was extracted from the fibro- blasts and mRNA of integrinβ1, talin, Collagen I , Collagen III and matrix metalloproteinase-1 were measured with real- time fluorescencequantitative PCR. Results In response to mechanical stretch, the morphology and orientation of the uterosacral ligament fibroblasts were changed as well as their synthetic function. The expressions of integrinβ1 mRNA for 4,15,24 hours' stretch ( 18. 822 ± 5. 545, 32. 527 ± 2. 212, 40. 357 ± 5. 140) were statistically up regulated compared with 0 hour ( 1. 003 ± 0. 064 ) , P = 0. 000. The expressions of talin mRNA for 4, 15,24 hours' stretch ( 109. 804 ± 34. 875, 106. 574 ± 35.477, 863. 206 :t 144. 361 ) were statistically up regulated compared with 0 hour ( 1. 009 ± 0. 468) ,P =0. 000. The expressions of collagen I mRNA for 4,15 hours' stretch(0. 753 ±0. 192, 0. 701 ±0. 023)were statistically down regulated compared with 0 hour ( 1. 000 ±0. 129 ) , P = 0.008, but for 24 hours' stretch, the expression (1.113 ± 0. 049) of collagen I mRNA were restored to the level of 0 hour. The expressions of collagen m mRNA for 4, 15,24 hours' stretch (4. 792 ± 1. 612, 6. 146 ± 1. 169, 5. 021 ±0. 940) were statistically up regulated compared with 0 hour( 1. 001 ± 0. 249 ), P = 0. 002. The expressions of MMP-1 mRNA for 4,15,24 hours' stretch (6. 233 ± 1. 690, 23. 173 ± 9. 251, 20. 133 ± 7. 100 ) were statistically up regulated compared with 0 hour ( 1. 000 ± 0. 100 ), P = 0. 005. Conclusions The morphology, orientation and synthesis function of the fibroblasts can be regulated by mechanical stress. Cellular matrix remodeling may be adaptive changes to the mechanical force.
出处 《中国实用妇科与产科杂志》 CAS CSCD 北大核心 2012年第3期197-200,共4页 Chinese Journal of Practical Gynecology and Obstetrics
基金 河北省科技支撑计划项目(092061107D)
关键词 盆底器官脱垂 细胞力学 整合素Β1 踝蛋白 细胞外基质 pelvic organ prolapse cytomechanics integrinβ1 talin extracellular matrix
  • 相关文献

参考文献16

  • 1Kerkhof MH, Hendriks L, Brolmann HA. Changes in connective tissue in patients with pelvic organ prolapse-a review of the eurrent literature [ J ]. Int Urogynecol J Pelvic Floor Dysfunct, 2009, 20(4) :461-474.
  • 2Mammoto T, Ingber DE. Mechanical control of tissue and organ development[J]. Development, 2010,137 (9) : 1407-1420.
  • 3单淑芝(综述,石彬(审校).盆底功能障碍性疾病及相关生物力学研究进展[J].中国实用妇科与产科杂志,2010,26(4):304-306. 被引量:48
  • 4Ewies AA, Elshafie M, Li J, et al. Changes in transcription profile and cytoskeleton morphology in pelvic ligament fibroblasts in response to stretch: the effects of estradiol and levormeloxifene [J]. Mol Hum Reprod, 2008,14(2) :127-135.
  • 5冯元帧.生物力学[M].北京:科学出版社,1983.
  • 6Chiquet M, Renedo AS, Huber F, et al. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? [J]. Matrix Biol, 2003,22( 1 ) :73-80.
  • 7Ing, ber DE. Tensegrity-based mechanosensing from macro to micro [ J ]. Prog Biophys Mol Biol, 2008,97 (2-3) : 163-179.
  • 8Mammoto A, Ingber DE. Cytoskeletal control of growth and cell fate switching[ J ]. Curr Opin Cell Biol, 2009,21 (6) : 864-870.
  • 9Tetsunaga T, Furumatsu T, Abe N, et al. Mechanical stretch stimulates integrin alphaVbeta3-mediated collagen expression in human anterior cruciate ligament cells[J]. J Biomech, 2009,42 ( 13 ) :2097-2103.
  • 10Kaneko D, Sasazaki Y, Kikuchi T,et al. Temporal effects of cyclic stretching on distribution and gene expression of integrin and cytoskeleton by ligament fibroblasts in vitro[J]. Connect Tissue Res, 2009,50(4) :263-269.

二级参考文献23

  • 1De Keulenaer BL, De Waele JJ, Powell B,et al. What is normal intra-abdominal pressure and how is it affected by positioning, body mass and positive end-expiratory pressure? [ J ]. Intensive Care Med, 2009,35 (6) :969-976.
  • 2Rebecca UM, Markus H ,John OL. Origin and insertion points involved in levator ani muscle defects [ J ]. Am J Obstet Gynecol, 2007,196(3) :251 e1-e5.
  • 3Luyun Chen,James AA,John OL. A 3D finite element model of anterior vaginal wall support to evaluate mechanisms underlying cystocele formation[J]. Journal of Biomechanics,2009,42(10) : 1371-1377.
  • 4Goh JT. Biomechanic properties of prolapse vaginal tissue in pre and post menopausal women [ J ]. Int Urogynecol J,2002,13 ( 2 ) : 76-79.
  • 5Cosson M, Lambaudie E, Boukerrou M, et al. A biomechanical study of the strength of vaginal tissues. Results on 16 post-menopausal patients presenting with genital prolapse[J]. Eur J Obstet Gynecol Reprod Biol,2004,112(2) :201-205.
  • 6Lei L, Song Y, Chen R. Biomechanieal properties of prolapsed vaginal tissue in pre- and postmenopausal women[ J]. Int Urogynecol J,2007,18(6) :603-607.
  • 7Rubod C, Boukerrou M, Brieu M, et al. Biomechanical properties of vagi.nal tissue: preliminary results[ J]. Int Urogynecol J Pelvic Floor Dysfunct,2008,19 (6) : 811-816.
  • 8Epstein LB, Graham CA, Heit MH. Systemic and vaginal biomechanical properties of women with normal vaginal support and pelvic organ prolapse [J]. Am J Obstet Gynecol, 2007,197 (2) : 165e1-e6.
  • 9Lowder JL, Debes KM, Moon DK, et al. Biomechanical adaptations of the rat vagina and supportive tissues in pregnancy to accommodate delivery [J]. Obstet Gynecol, 2007,109 ( 1 ) : 136- 143.
  • 10Rahn DD, Ruff MD, Brown SA, et al. Biomechanical properties of the vaginal wall: effect of pregnancy, elastic fiber deficiency, and pelvic organ prolapse[J]. Am J Obstet Gynecol,2008,198 (5) :590e1-e6.

共引文献55

同被引文献77

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部