期刊文献+

非线性超声检测镁合金疲劳的仿真和试验 被引量:10

Simulation and Experiment of Fatigue Damage Measurement in Magnesium Alloy Using Nonlinear Ultrasonic
下载PDF
导出
摘要 为了利用非线性超声检测AZ31镁合金的早期疲劳损伤,通过现有的本构关系建立了非线性超声检测有限元模型,计算了材料疲劳引起的内部微缺陷长度、数量和宽度变化对非线性超声系数的影响。计算结果表明,材料疲劳产生的微缺陷是产生二次谐波的原因,有限元方法可以有效模拟镁合金材料的超声非线性效应。进行了两个镁合金疲劳试件的非线性超声在线检测试验,研究发现,在镁合金疲劳早期,超声非线性系数随疲劳加载周数单调增加,但在疲劳后期出现了超声非线性系数减小的现象。试验结果表明,超声非线性系数对疲劳早期损伤非常敏感,可以用来表征材料的早期疲劳损伤程度,有限元计算结果与试验结果相吻合。 In order to monitor the early fatigue damage of AZ31 magnesium alloy by nonlinear ultrasonic,a nonlinear FEM model is established by a special element which accounts for a nonlinear stress-strain relation.The influence of the micro-defect with different length,quantity and width to ultrasonic nonlinearity parameters is calculated.The simulation results show that micro-defects in material fatigue is the cause of the second harmonic generation,finite element method can effectively simulate ultrasonic nonlinear effects in magnesium alloy material.Meanwhile,ultrasonic nonlinearity parameters of two magnesium samples are online measured.There is a significant increase inlinked to fatigue cycles in early stages of fatigue life,but at the late stage of fatigue,an experimental phenomenon of the decrease in fatigue cycles is obtained.The experimental results show that ultrasonic nonlinearity parameters can characterize the early fatigue damage of magnesium.The results of simulation verify experimental results.
作者 吴斌 颜丙生
出处 《振动.测试与诊断》 EI CSCD 北大核心 2012年第1期96-100,164-165,共5页 Journal of Vibration,Measurement & Diagnosis
基金 北京市教委科技计划重点资助项目(编号:KZ200810005009) 国家自然科学基金资助项目(编号:10772008)
关键词 有限元法 非线性超声 疲劳损伤 镁合金 finite element method,nonlinear ultrasonic,fatigue damage,magnesium
  • 相关文献

参考文献10

  • 1税国双,汪越胜,Jianmin Qu,Jin-Yeon Kim,Laurence J. Jacobs.利用直接激发Rayleigh表面波的方法测量材料的声学非线性系数[J].声学学报,2008,33(4):378-384. 被引量:19
  • 2Szilard J.Ultrasonic testing:non-conventional testingtechniques[M].New York:John Wiley&Sons Ltd,1982:1-23.
  • 3Nagy P B.Fatigue damage assessment by nonlinearultrasonic materials characterization[J].Ultrasonics,1998,36:375-381.
  • 4Jordan P M.Finite amplitude acoustic traveling wavesin a fluid that saturates a porous medium:accelerationwave formation[J].Physics Letters A,2006,355(3):216-221.
  • 5Kim J Y,Jacobs L J,Qu J,et al.Experimental char-acterization of fatigue damage in a nickel-base superal-loy using nonlinear ultrasonic waves[J].Journal ofthe Acoustic Society of America,2006,120(3):1266-1273.
  • 6Shui Guoshuang,Kim J Y,Qu Jianmin,et al.A newtechnique for measuring the acoustic nonlinearity ofmaterials using Rayleigh waves[J].NDT&E Interna-tional,2008,41(1):326-329.
  • 7Sohn K Y,Jones J W,Berkmortel J.Creep and boltload retention behavior of die cast magnesium alloysfor high temperature application[C]∥SAE TechnicalPaper Series.Detroit:SAE World Congress,2000:271-276.
  • 8米林,田铁,谭伟.镁合金阻尼特性及检测技术研究[J].振动.测试与诊断,2010,30(1):75-77. 被引量:2
  • 9Breazeale M A,Philip J.Determination of third orderelastic constants from ultrasonic harmonic generationmeasurements[J].Physical Acoustics,1984,17:1-60.
  • 10Cantrell J H.Crystalline structure and symmetry de-pendence of acoustic nonlinearity parameters[J].Japanese Journal of Applied Physics,1994,76(6):3372-3380.

二级参考文献30

共引文献19

同被引文献98

引证文献10

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部